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Review: Potential Data Leakage

Model inversion attack
[Fredrikson et al. ‘15]

Extract unintended memorization [Carlini et al. L.Jsenix Security
Symposium 2019]
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Review: Generic Framework
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How do we provide useful information to user, while
preserving privacy of individuals in the data?
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Example Query: Counting Query
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E.g., Fraction of people having disease: 1/2



Definition of Differential Privacy

A (randomized) algorithm M: X™"xQ — T is e-differential private if
for all datasets x,x" € X™ that differ on one entry and every query q € Q,
for all subsets S of the outcome space T,

I;/Ir[M(x, q) € S]
l;/[r[M(x’, q) € S] = 4

A should be close to 1
If A>> 1, little privacy is guaranteed
If A =1, individuals have no effect on the results and there is zero utility
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Definition of Differential Privacy

A (randomized) algorithm M: X™"xQ — T is e-differential private if
for all datasets x,x’ € X™ that differ on one entry and every query q € Q,
for all subsets S of the outcome space T,

l;/[r[M(x, q) €S| <e€ I;/Ir[M(x’, q) € S]

For small e: e® = 1 + ¢, but is mathematically more convenient

. . . 1 1
e not small in cryptographical sense. Think € = g Ore~—

10
This is called (pure) differential privacy
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RandOm ized ReS pOnSG [Warner ‘65]

q(x) € {0,1}

( 1
q(x) w.p. >t a

RR,(x) = < |
K—lq(x) w.p.s—a
Claim: setting a = %ZE: RR,(x) is € —differentially private
Proof: smalle: e = 1+¢
> Neighboring databases: q(x;) = 0; q(x})) =1 Geta ~ =

4

Pr[RR(0)=0] _ %(1+2§:)
7 Pr[RR(D=0]  Lq_e-1y
2 e€+1

= e€
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Is Randomized Response Accurate?

Individuals

ixl Y1 = RR;(x) Analyzer (untrusted)

$r, — B=RRGD | A

o o 25

Y, = RR, (xn)
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Is Randomized Response Accurate?

. ElY;] =xi(%+a)+(1—xl-)(%—a)=%+a(2xi—1)

1
+a

Yi— R
- Put .9/6'\1 = 22 then E[Xi] = Xj
1_.2

. ButVar[£] =+ ~ = high!

42
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-  Useful when n > eiz
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Laplace Mechanism

Let g be a counting query
ldea: M(x) = q(x) + z, where z is some random noise
How much noise is enough?

2~ ' 1q(0) — ()] <

Pr[M(x) =y] =Prlq(x) +z=y] =Prlz =y — q(x)]
PriM(x") = y] = Pr[q(x") + z' = y] = Pr[z' = y — q(x")]

1
lz—Z'| <=
n

Find a distribution that change by a factor of at most e€ over
intervals of length 1/n

(Y/N)

Y

Y

N
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Laplace Mechanism

Laplace distribution Lap(b)

Density of Lap(b) at z: e —|z|/b

If we setb = =
en

rlon)=x+d]
fian (2) =7
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Laplace Mechanism: Intuition

R
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Accuracy of Laplace Mechanism

Mean is accurate, because we add a zero-mean noise
Std of Lap (ﬁ) is O (i)

Significantly better than — — by randomized response

\/_
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Global Sensitivity

The analysis works for other types of queries
Use Lap(%) instead of Lap(é)

Global sensitivity Af = max|q(x) — q(x")|

5% ( Iy—f(x)IE) 1
Pr(f()+Lap(Af/e)=y) _ =P Af P[Lap(b) = z] = — e~ 2I/b
Pr(f(x")+Lap(Af/€)=Y) exp(_ly—f(}c’)IE) 2b
A

Af
< exp (i (1f (x) — f(x’)l)> < e

= exp (i (y =f&Dl =1y = f(x)|)>

Af



Approximate Differential Privacy

A (randomized) algorithm M: X™"xQ — T is (e, 6)-differential private if
for all datasets x,x’ € X™ that differ on one entry and every query q € Q,
for all subsets S of the outcome space T,

I;/Ir[M(x, q) €S| <e€ l;[r[M(x’, q) €S|+ 6

ratio bounded

Pr [response]

Bad Responses: /7 y y
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Basic Property of DP: Post Processing

* Claim: M’ is (g, 8)-differentially private

* Proof:

* Let x, x’ be neighboring databases and S’ a subset of T’
e letS ={z €T:A(z) € S’} be the preimage of S’ under A

Pr[M'(x) € S'] = Pr[M(x) € S]
<e‘PrIM(x')eS]|+8 =e¢Pr[M'(x') eS|+ 6
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Property of DP: Sequential Composition

* If M,, M,, ..., M, are algorithms that access a private
database D such that each M, satisfies €, -differential

privacy,

then the combination of their outputs satisfies
e-differential privacy with e=g,+...+¢g,
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Property of DP: Parallel Composition

If M,, M,, ..., M, are algorithms that access
disjoint databases D,, D,, ..., D, such that each
M. satisfies g; -differential privacy,

then the combination of their outputs satisfies
e-differential privacy with e= max{e,,...,€,}
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Example Problem
Sex | Height | Weight eI

M 6’2" 210

F 537 190 o # Males with BMI <25
o * # Males

; S —  # Females with BMI < 25

M 53" 180 e # Females

M 6’7" 250

. e-differentially private algorithm to answer all the questions?

What is the total error?



Algorithm 1

Return:

* (# Males with BMI < 25) + Lap(4/¢)

* (# Males) + Lap(4/¢)

* (# Females with BMI) <25 + Lap(4/¢)
* (# Females) + Lap(4/¢)
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Privacy Analysis of Algorithm 1

. Sensitivity of each query is 1
- Each query is answered using a £/4-DP algorithm

- By sequential composition, we get €-DP
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Utility Analysis of Algorithm 1

Error:

> E(@®) - q)’)

Total Error:
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Algorithm 2

Compute:

* G = (# Males with BMI < 25) + Lap(1/¢)
* q, = (# Males with BMI > 25) + Lap(1/¢)
* Gz = (# Females with BMI < 25) + Lap(1/¢)
* Gz = (# Females with BMI > 25) + Lap(1/¢)

Return

P P, g —~~ ~ L o :
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Privacy Analysis of Algorithm 2

* Sensitivity of count = 1. So each query is
answered using a ¢-DP algorithm.

* 41,92, 93, 44 are counts on disjoint portions of
the database. Thus by parallel composition
releasing Gy, 95, 3, q4 satisties e-DP.

By the postprocessing theorem, releasing qi, g1+,
g3, q3+q, also satisfies e-DP.
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Utility Analysis of Algorithm 2

Error:

> E (@ - q)’)

Total Error:
2 2

@) ez 2 a2y - 3



Generalized Sensitivity

* Let f:D - R% be a function that outputs a
vector of d real numbers. The sensitivity of
fis given by:

S(f)= _ max |f(D)—f(D)ll

D,D':|DAD'|=1

where ||x —yl||; = X;lx; — vl
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Generalized Sensitivity

q, = # Males with BMI < 25
q, = # Males with BMI > 25
q = # Males with BMI

Let f; be a function that answers both q4, g,
Let f, be a function that answers both g, q

Sensitivity of f; =1
Sensitivity of f, =2

An alternate privacy proof for Alg 2 is to show that the

~ I~ I~ ~ e
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Improving Utility of Algorithm 2

Compute:
* g1 = # Males with BMI <25 + Lap(1/¢)
* q; = # Males with BMI > 25 + Lap(1/¢)

Return

* g1, 0:+0,
1, 41792 We know q; < q1 + q3,

but P[q; > g{+q5] >0
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Constrained Inference

DATA OWNER

Private
Data

Diff.

Private | !
Interface| !

ANALYST
Constrained | q
Inference
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Least Squares Optimization

k
m_inz: (G; — q1)°
q i=1

Constraint(qq, g5, ... qx) = True

such that
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Geometric Interpretation

5.t.C(q1, Gz, .., )

. S
R Space of
Outputs

satisfying the

min ) @ ~ %)
Q)

constraint

Theorem: ||g —qll, < |lg — q||, when the constraints
form a convex space
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Case Study: K-means Clustering

. Original unclustered data . Clustered data
5F 1 5t
4+ . 4t
3t 1 3F
g 2F 1 5 21 .

1f g 1t
of . : ol .

—-1F : g —-1F )

23 2 -1 0 1 2 3 4 5 & %3 -2 -10 1 2 3 4 5



K-means: Problem

Partition a set of points x4, ..., x,, into k clusters S, ..., Sk
such that the following is minimized:

k
) | ) | 2
> D - il

1=1 XES;

where pu; is the mean of §;
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K-means: Algorithm

Initialize a set of k centers

Repeat until convergence:
o Assign each point to its nearest center

o Recompute the set of centers

Output final set of k centers
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Differentially Private K-means

[Blum et al. PODS ‘05]
Suppose we fix the number of iterations to T
o [Each iteration uses €/T privacy budget, total privacy loss is €
In each iteration (given a set of centers):
o Assign the points to the new center to form clusters
o Noisily compute the size of each cluster

o Compute noisy sums of points in each cluster
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Differentially Private K-means

[Blum et al. PODS ‘05]

Which of these steps expends privacy budget?

In each iteration (given a set of centers):

No
Yes

Yes

o Assign the points to the new center to form clusters
o Noisily compute the size of each cluster

o Compute noisy sums of points in each cluster
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Differentially Private K-means

[Blum et al. PODS ‘05]

What is the sensitivity?

In each iteration (given a set of centers):

o Assign the points to the new center to form clusters

o Noisily compute the size of each cluster

o Compute noisy sums of points in each cluster

.

data dependent
e.g., if x € [0,1]9,
then sensitivity = d
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Differentially Private K-means

[Blum et al. PODS ‘05]

What noise do we add?

In each iteration (given a set of centers):
o Assign the points to the new center to form clusters
o Noisily compute the size of each cluster

o Compute noisy sums of points in each cluster

Lap(2T /€)
Lap(2dT /e)
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Results

- Can distinguish clusters that are far apart
- Can’t distinguish small clusters that are close by

Original Kmeans algorithm Laplace Kmeans algorithm
1 T T T T 1 T | T | 3
frameu 1:2:3  + frameu 1:2:3  +
09 |
0.8 M
i 7 25
0.7 8 ] 5 : ot £
0.6 1 T+ Jgt g o F
0.5 l ST 2
0.4 |- a4l
0.3 | 3
1.5
0.2 - 2 F
+
0.1 A i
0 0 s 1

| | 1 | | I | | | | | 1
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Application: Prevent Memorization

Test Estimated Extraction
Optimizer € Loss Exposure  Possible?
RMSProp 0.65 1.69 1.1
RMSProp 1.21 1.59 2.3
g RMSProp  5.26 1.41 1.8
< RMSProp 89 1.34 2:1
= RMSProp 2x10% 1.32 3.2
RMSProp 1x10° 1.26 2.8
SGD oo 2.11 3.6
A
A SGD N/A 1.86 9.5
— RMSProp N/A 117 31.0 v

44



Application: Pharmacogenetics

- 4-- Fixed 10mg —4— DP Histo. - @ - LR —e— DPLR

Goal: personalized dosing
for warfarin

® see if genetic markers
—— can be predicted from
() Time in Therapeutic Range () Mortaiy Events DP models

® small epsilon (< I) does

protect privacy but even
moderate epsilon (< 5)
leads to increased risk

0.25 1 5 20 100 0.25
¢ (privacy budget)

0.25 1 5 20 100 0.25 1 5 20 100

¢ (privacy blldgef) ¢ (privacy budget) .
(¢) Stroke Events (d) Bleeding Events Of fa—tallty
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