Security and Privacy of ML Differential Privacy

Shang-Tse Chen

Department of Computer Science & Information Engineering National Taiwan University

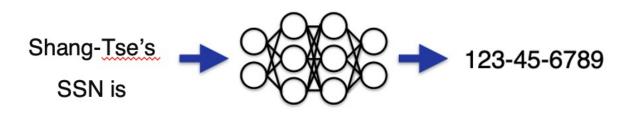
Review: Potential Data Leakage

Model inversion attack

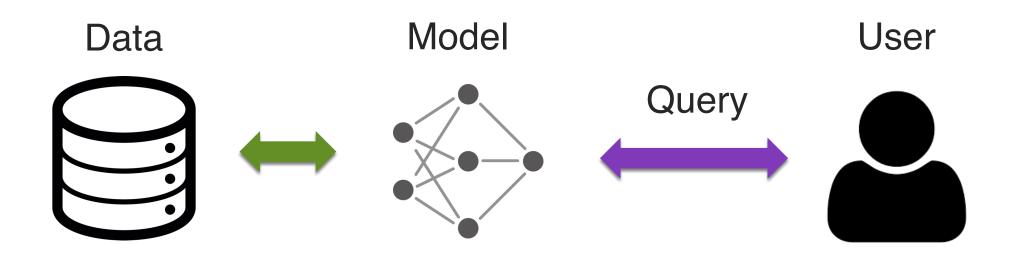
[Fredrikson et al. '15]

Extract unintended memorization

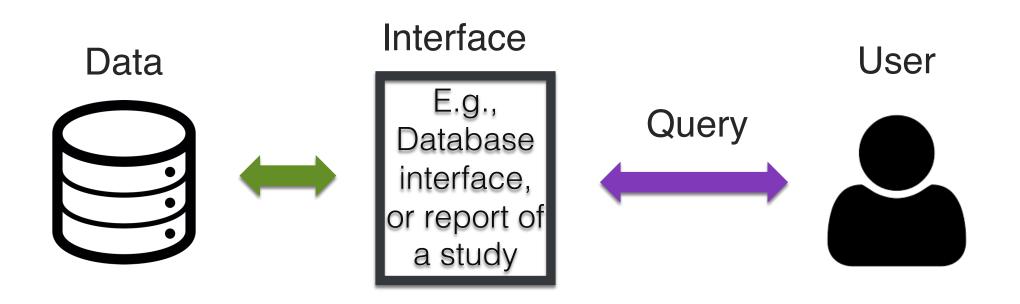
[Carlini et al. Usenix Security Symposium 2019]



Review: Generic Framework

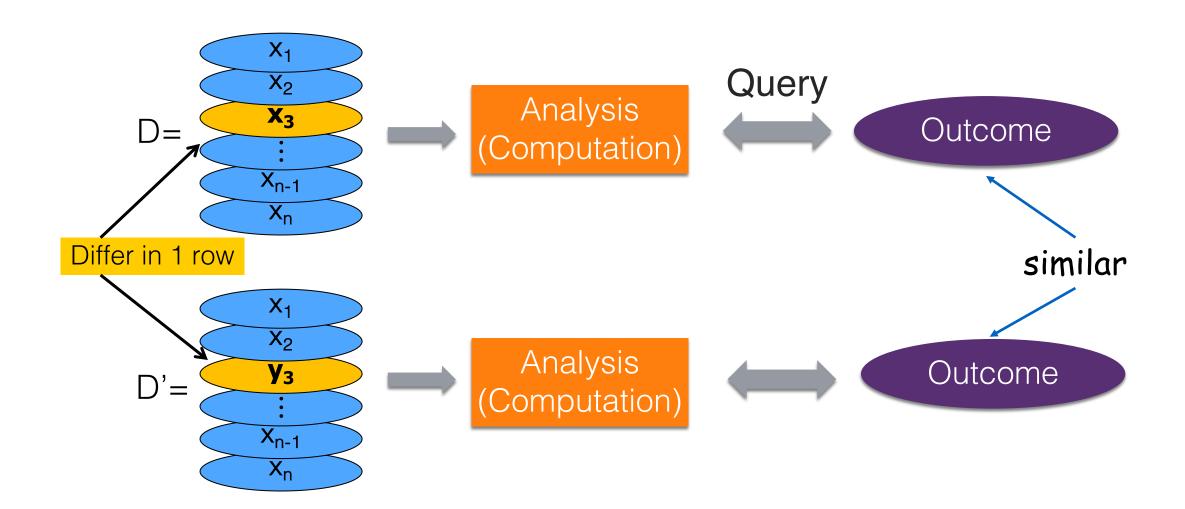


Review: Generic Framework



How do we provide useful information to user, while preserving privacy of individuals in the data?

Differential Privacy [Dwork et al. '06]



Example Query: Counting Query

$$q': \mathcal{X} \to \{0, 1\}$$

$$q(x) = \frac{1}{n} \sum_{i=1}^{n} q'(x_i)$$

E.g., Fraction of people having disease: 1/2

A (randomized) algorithm $M: X^n \times Q \to T$ is ϵ -differential private if for all datasets $x, x' \in X^n$ that differ on one entry and every query $q \in Q$, for all subsets S of the outcome space T,

$$\frac{\Pr[M(x,q) \in S]}{\Pr[M(x',q) \in S]} \le A$$

- A should be close to 1
- If A >> 1, little privacy is guaranteed
- If A = 1, individuals have no effect on the results and there is zero utility

A (randomized) algorithm $M: X^n \times Q \to T$ is ϵ -differential private if for all datasets $x, x' \in X^n$ that differ on one entry and every query $q \in Q$, for all subsets S of the outcome space T,

$$\frac{\Pr[M(x,q) \in S]}{\Pr[M(x',q) \in S]} \le (1 + \epsilon)$$

- A should be close to 1
- If A >> 1, little privacy is guaranteed
- If A = 1, individuals have not effect on the results and there is zero utility

A (randomized) algorithm $M: X^n \times Q \to T$ is ϵ -differential private if for all datasets $x, x' \in X^n$ that differ on one entry and every query $q \in Q$, for all subsets S of the outcome space T,

 $\Pr_{M}[M(x,q) \in S] \leq (1+\epsilon) \Pr_{M}[M(x',q) \in S]$

A (randomized) algorithm $M: X^n \times Q \to T$ is ϵ -differential private if for all datasets $x, x' \in X^n$ that differ on one entry and every query $q \in Q$, for all subsets S of the outcome space T,

$$\Pr_{M}[M(x,q) \in S] \leq \frac{e^{\epsilon}}{M} \Pr_{M}[M(x',q) \in S]$$

- For small ϵ : $e^{\epsilon} \approx 1 + \epsilon$, but is mathematically more convenient
- ϵ not small in cryptographical sense. Think $\epsilon \approx \frac{1}{100}$ or $\epsilon \approx \frac{1}{10}$
- This is called (pure) differential privacy

Randomized Response [Warner '65]

• $q(x) \in \{0,1\}$

•
$$RR_{\alpha}(x) = \begin{cases} q(x) & w.p.\frac{1}{2} + \alpha \\ \neg q(x) & w.p.\frac{1}{2} - \alpha \end{cases}$$

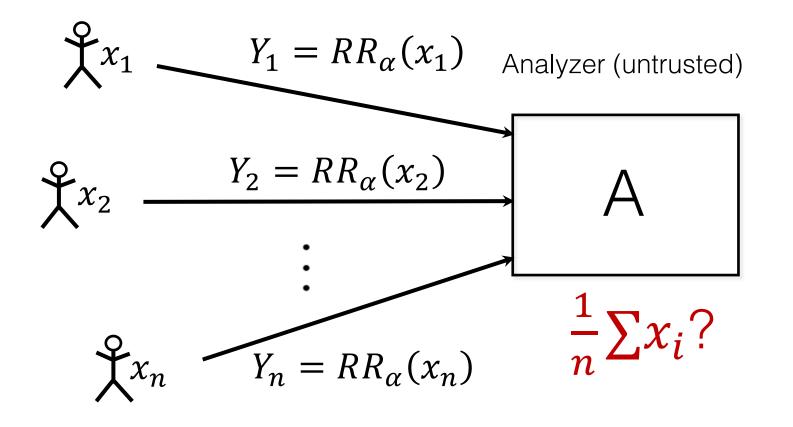
- Claim: setting $\alpha = \frac{1}{2} \frac{e^{\epsilon} 1}{e^{\epsilon} + 1}$, $RR_{\alpha}(x)$ is ϵ -differentially private
- Proof:
 - Neighboring databases: $q(x_i) = 0$; $q(x'_i) = 1$

small
$$\epsilon$$
: $e^{\epsilon} \approx 1 + \epsilon$
Get $\alpha \approx \frac{\epsilon}{4}$

$$\circ \quad \frac{\Pr[RR(0)=\mathbf{0}]}{\Pr[RR(1)=\mathbf{0}]} = \frac{\frac{1}{2}(1+\frac{e^{\epsilon}-1}{e^{\epsilon}+1})}{\frac{1}{2}(1-\frac{e^{\epsilon}-1}{e^{\epsilon}+1})} = e^{\epsilon}$$

Is Randomized Response Accurate?

Individuals



Is Randomized Response Accurate?

•
$$E[Y_i] = x_i \left(\frac{1}{2} + \alpha\right) + (1 - x_i) \left(\frac{1}{2} - \alpha\right) = \frac{1}{2} + \alpha(2x_i - 1)$$

• Put
$$\widehat{x_i} = \frac{Y_i - \frac{1}{2} + \alpha}{2\alpha}$$
 then $E[\widehat{x_i}] = x_i$

• But
$$Var[\widehat{x}_i] = \frac{\frac{1}{4} - \alpha^2}{4\alpha^2} \approx \frac{1}{\epsilon^2}$$
 high!

•
$$E[\frac{1}{n}\sum \hat{x_i}] = \frac{1}{n}\sum x_i \text{ and } Var[\frac{1}{n}\sum \hat{x_i}] = \frac{1}{n}\frac{\frac{1}{4}-\alpha^2}{4\alpha^2} \approx \frac{1}{n\epsilon^2}; \text{ stdev} \approx \frac{1}{\sqrt{n\epsilon}}$$

• Useful when $n \gg \frac{1}{\epsilon^2}$

Laplace Mechanism

- Let q be a counting query
- Idea: M(x) = q(x) + z, where z is some random noise
- How much noise is enough?

• If
$$x \sim x' \rightarrow |q(x) - q(x')| \le \frac{1}{n}$$

- $\Pr[M(x) = y] = \Pr[q(x) + z = y] = \Pr[z = y q(x)]$
- $\Pr[M(x') = y] = \Pr[q(x') + z' = y] = \Pr[z' = y q(x')]$
- $|z-z'| \leq \frac{1}{n}$
- Find a distribution that change by a factor of at most e^{ϵ} over intervals of length 1/n

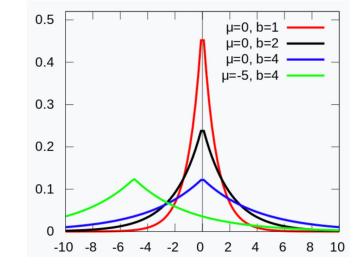
Laplace Mechanism

• Laplace distribution Lap(*b*)

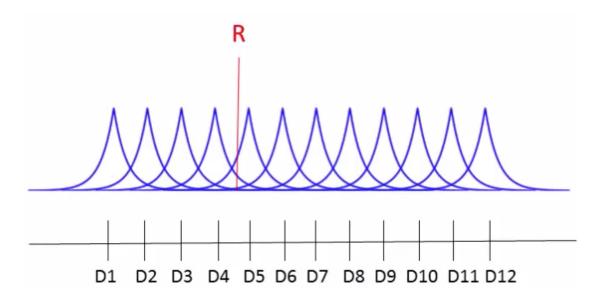
• Density of Lap(b) at
$$z: \frac{1}{2b}e^{-|z|/b}$$

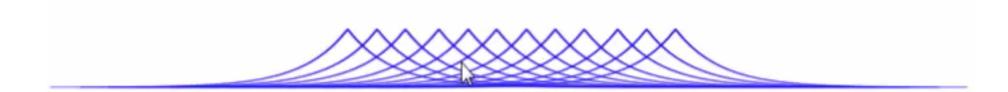
• If we set
$$b = \frac{1}{\epsilon n}$$
:

$$\frac{\Pr\left[\operatorname{Lap}\left(\frac{1}{\epsilon n}\right) = z + \frac{1}{n}\right]}{\Pr\left[\operatorname{Lap}\left(\frac{1}{\epsilon n}\right) = z\right]} \le e^{\epsilon}$$



Laplace Mechanism: Intuition





Accuracy of Laplace Mechanism

- Mean is accurate, because we add a zero-mean noise
- Std of Lap $\left(\frac{1}{\epsilon n}\right)$ is $0\left(\frac{1}{\epsilon n}\right)$
- Significantly better than $\frac{1}{\sqrt{n}\epsilon}$ by randomized response

Global Sensitivity

- The analysis works for other types of queries
- Use $\operatorname{Lap}(\frac{\Delta f}{\epsilon})$ instead of $\operatorname{Lap}(\frac{1}{\epsilon n})$
- Global sensitivity $\Delta f = \max_{x \sim x'} |q(x) q(x')|$

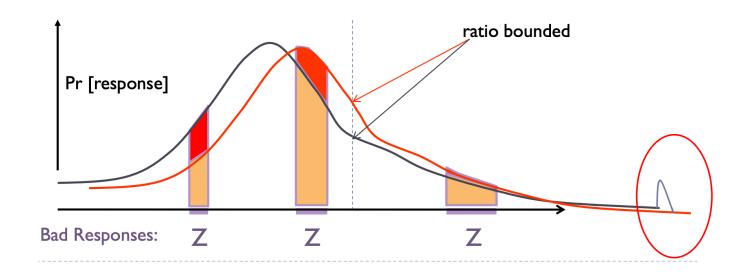
$$\frac{\Pr(f(x) + Lap(\Delta f/\epsilon) = y)}{\Pr(f(x') + Lap(\Delta f/\epsilon) = y)} = \frac{\exp\left(-\frac{|y - f(x)|\epsilon}{\Delta f}\right)}{\exp\left(-\frac{|y - f(x')|\epsilon}{\Delta f}\right)}$$
$$= \exp\left(\frac{\epsilon}{\Delta f} \left(|y - f(x')| - |y - f(x)|\right)\right)$$
$$\leq \exp\left(\frac{\epsilon}{\Delta f} \left(|f(x) - f(x')|\right)\right) \leq e^{\epsilon}$$

$$P[Lap(b) = z] = \frac{1}{2b}e^{-|z|/b}$$

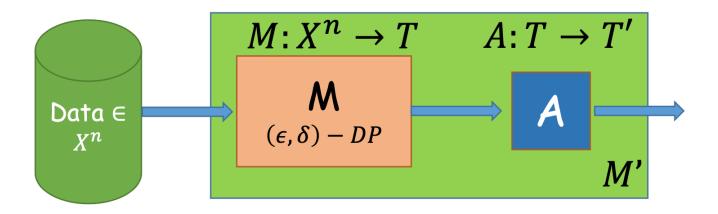
Approximate Differential Privacy

A (randomized) algorithm $M: X^n \times Q \to T$ is (ϵ, δ) -differential private if for all datasets $x, x' \in X^n$ that differ on one entry and every query $q \in Q$, for all subsets S of the outcome space T,

 $\Pr_{M}[M(x,q) \in S] \leq e^{\epsilon} \Pr_{M}[M(x',q) \in S] + \delta$



Basic Property of DP: Post Processing



- Claim: *M*' is (ϵ, δ) -differentially private
- Proof:
 - Let x, x' be neighboring databases and S' a subset of T'
 - Let $S = \{z \in T : A(z) \in S'\}$ be the preimage of S' under A $\Pr[M'(x) \in S'] = \Pr[M(x) \in S]$ $\leq e^{\epsilon} \Pr[M(x') \in S] + \delta = e^{\epsilon} \Pr[M'(x') \in S'] + \delta$

Property of DP: Sequential Composition

- If M₁, M₂, ..., M_k are algorithms that access a private database D such that each M_i satisfies ε_i -differential privacy,
 - then the combination of their outputs satisfies ε -differential privacy with $\varepsilon = \varepsilon_1 + ... + \varepsilon_k$

Property of DP: Parallel Composition

If M_1 , M_2 , ..., M_k are algorithms that access disjoint databases D_1 , D_2 , ..., D_k such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ε -differential privacy with $\varepsilon = \max{\varepsilon_1, ..., \varepsilon_k}$

Example Problem

Sex	Height	Weight
Μ	6'2''	210
F	5′3″	190
F	5′9″	160
М	5′3″	180
М	6′7″	250

Queries:

- # Males with BMI < 25
- # Males
- # Females with BMI < 25
- # Females

- ϵ -differentially private algorithm to answer all the questions?
- What is the total error?

Algorithm 1

Return:

- (# Males with BMI < 25) + Lap($4/\epsilon$)
- (# Males) + Lap $(4/\epsilon)$
- (# Females with BMI) < $25 + Lap(4/\epsilon)$
- (# Females) + Lap($4/\epsilon$)

Privacy Analysis of Algorithm 1

- Sensitivity of each query is 1
- Each query is answered using a $\epsilon/4$ -DP algorithm
- By sequential composition, we get ϵ -DP

Utility Analysis of Algorithm 1

Error:

 $\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$

Total Error:

$$2\left(\frac{4}{\varepsilon}\right)^2 \times 4 = \frac{128}{\varepsilon^2}$$

Algorithm 2

Compute:

- $\widetilde{q_1} = (\# \text{ Males with BMI} < 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_2} = (\# \text{ Males with BMI} > 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_3} = (\# \text{ Females with BMI} < 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_4} = (\# \text{ Females with BMI} > 25) + \text{Lap}(1/\epsilon)$

Return

• $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_3} + \widetilde{q_4}$

Privacy Analysis of Algorithm 2

• Sensitivity of count = 1. So each query is answered using a ε -DP algorithm.

- *q*₁, *q*₂, *q*₃, *q*₄ are counts on disjoint portions of the database. Thus by *parallel composition* releasing *q*₁, *q*₂, *q*₃, *q*₄ satisfies ε-DP.
- By the *postprocessing theorem*, releasing $\widetilde{q_1}$, $\widetilde{q_1} + \widetilde{q_2}$, $\widetilde{q_3}$, $\widetilde{q_3} + \widetilde{q_4}$ also satisfies ε -DP.

Utility Analysis of Algorithm 2

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

$$\widetilde{q_{1}} \qquad \widetilde{q_{1}} + \widetilde{q_{2}} \qquad \widetilde{q_{3}} \qquad \widetilde{q_{3}} + \widetilde{q_{4}}$$

Generalized Sensitivity

• Let $f: \mathcal{D} \to \mathbb{R}^d$ be a function that outputs a vector of *d* real numbers. The sensitivity of *f* is given by:

$$S(f) = \max_{D,D': |D\Delta D'|=1} \|f(D) - f(D')\|_1$$

where
$$\|\mathbf{x} - \mathbf{y}\|_{1} = \sum_{i} |x_{i} - y_{i}|$$

Generalized Sensitivity

- $q_1 = #$ Males with BMI < 25
- $q_2 = #$ Males with BMI > 25
- q = # Males with BMI
- Let f_1 be a function that answers both q_1 , q_2
- Let f_2 be a function that answers both q_1 , q
- Sensitivity of $f_1 = 1$
- Sensitivity of $f_2 = 2$
- An alternate privacy proof for Alg 2 is to show that the generalized sensitivity of $\tilde{q_1}$, $\tilde{q_2}$, $\tilde{q_3}$, $\tilde{q_4}$ is 1.

Improving Utility of Algorithm 2

Compute:

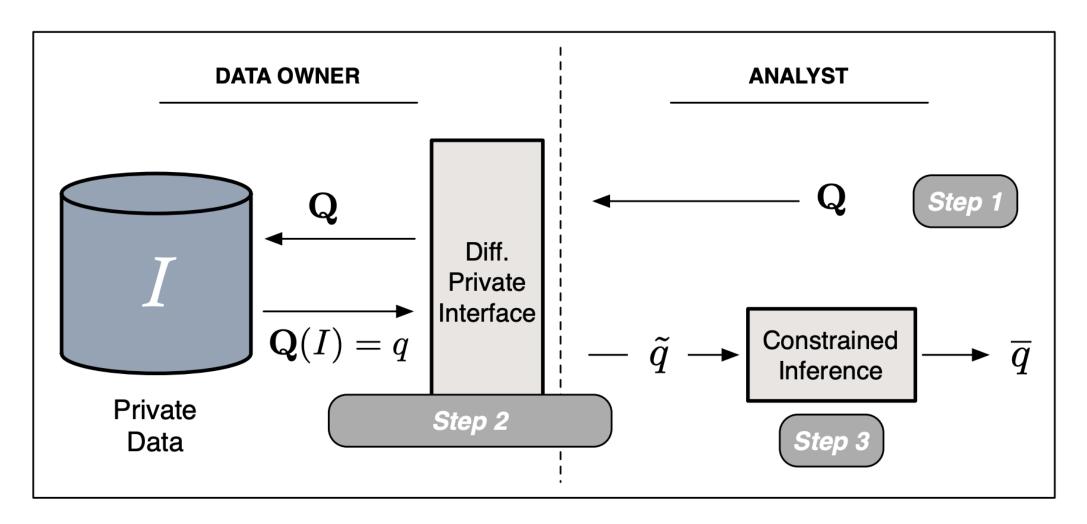
- $\widetilde{q_1} = #$ Males with BMI < 25 + Lap(1/ ε)
- $\widetilde{q_2} = #$ Males with BMI > 25 + Lap $(1/\epsilon)$

Return

• $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}$

We know $q_1 \le q_1 + q_2$, but $P[\widetilde{q_1} > \widetilde{q_1} + \widetilde{q_2}] > 0$

Constrained Inference



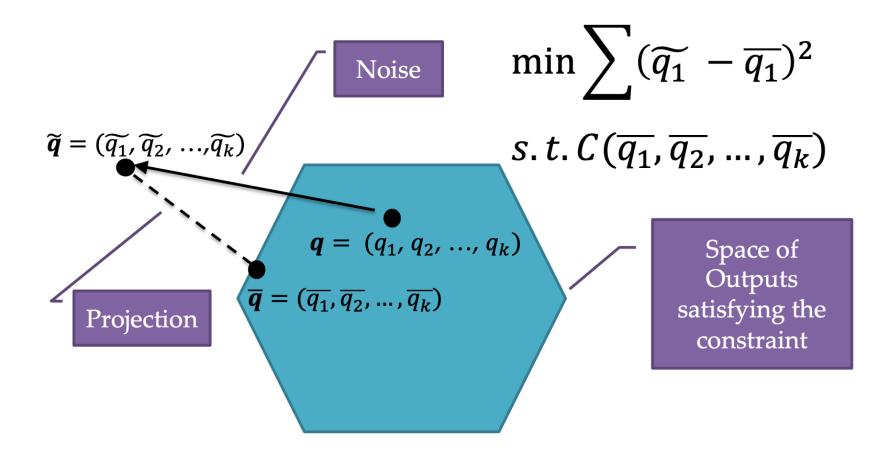
Least Squares Optimization

$$\min_{\overline{q}} \sum_{i=1}^{k} (\widetilde{q}_i - \overline{q}_i)^2$$

such that

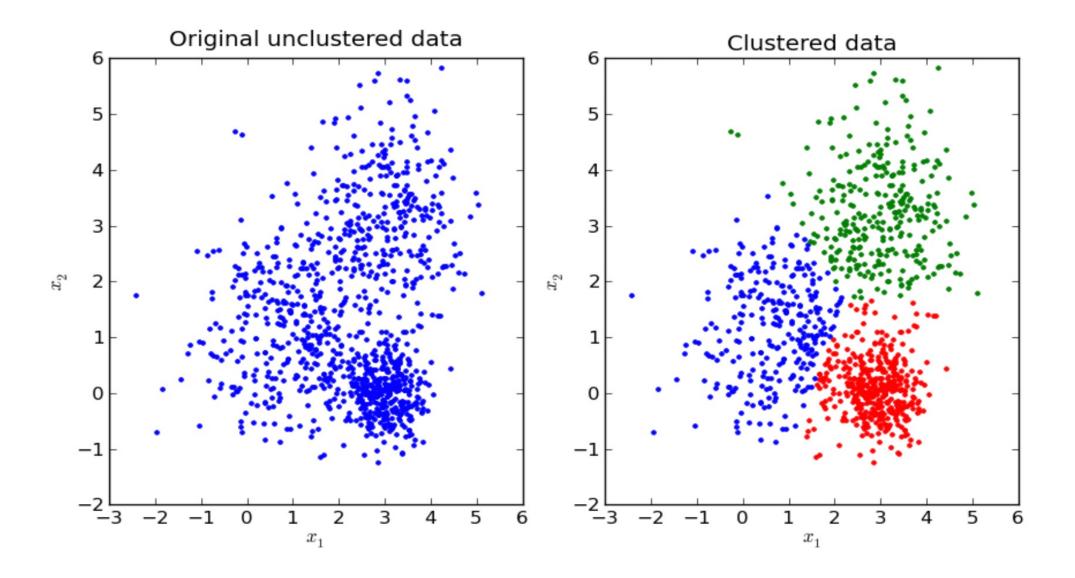
 $Constraint(\overline{q_1}, \overline{q_2}, ..., \overline{q_k}) = True$

Geometric Interpretation



Theorem: $\|\boldsymbol{q} - \overline{\boldsymbol{q}}\|_2 \le \|\boldsymbol{q} - \widetilde{\boldsymbol{q}}\|_2$ when the constraints form a convex space

Case Study: K-means Clustering



K-means: Problem

Partition a set of points $x_1, ..., x_n$ into k clusters $S_1, ..., S_k$ such that the following is minimized:

$$\sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - \mu_i\|_2^2$$

where μ_i is the mean of S_i

K-means: Algorithm

- Initialize a set of k centers
- Repeat until convergence:
 - Assign each point to its nearest center
 - Recompute the set of centers

Output final set of k centers

[Blum et al. PODS '05]

- Suppose we fix the number of iterations to *T*
 - Each iteration uses ϵ/T privacy budget, total privacy loss is ϵ
- In each iteration (given a set of centers):
 - Assign the points to the new center to form clusters
 - Noisily compute the size of each cluster
 - Compute noisy sums of points in each cluster

[Blum et al. PODS '05]

Which of these steps expends privacy budget?

In each iteration (given a set of centers):

- **No** Assign the points to the new center to form clusters
- Yes o Noisily compute the size of each cluster
- Yes o Compute noisy sums of points in each cluster

[Blum et al. PODS '05]

What is the sensitivity?

In each iteration (given a set of centers):

- Assign the points to the new center to form clusters
- Noisily compute the size of each cluster
- Compute noisy sums of points in each cluster

data dependent e.g., if $x \in [0,1]^d$, then sensitivity = d

[Blum et al. PODS '05]

What noise do we add?

In each iteration (given a set of centers):

- Assign the points to the new center to form clusters
- Noisily compute the size of each cluster
- Compute noisy sums of points in each cluster

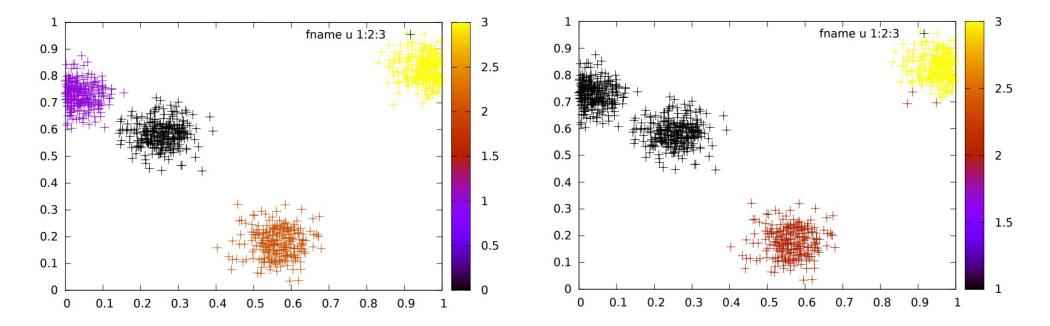
Lap $(2T/\epsilon)$ Lap $(2dT/\epsilon)$

Results

- Can distinguish clusters that are far apart
- Can't distinguish small clusters that are close by

Original Kmeans algorithm

Laplace Kmeans algorithm

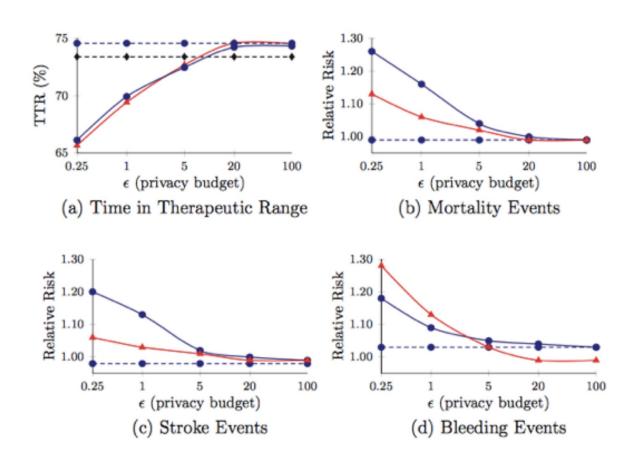


Application: Prevent Memorization

	Optimizer	ε	Test Loss	Estimated Exposure	Extraction Possible?
With DP	RMSProp	0.65	1.69	1.1	
	RMSProp	1.21	1.59	2.3	
	RMSProp	5.26	1.41	1.8	
	RMSProp	89	1.34	2.1	
	RMSProp	2×10^8	1.32	3.2	
	RMSProp	1×10^{9}	1.26	2.8	
	SGD	∞	2.11	3.6	
DP	SGD	N/A	1.86	9.5	
No	RMSProp	N/A	1.17	31.0	\checkmark

Application: Pharmacogenetics

- \leftarrow - Fixed 10mg \frown DP Histo. - \leftarrow - LR \frown DPLR



Goal: personalized dosing for warfarin

- see if genetic markers can be predicted from DP models
- small epsilon (< I) does protect privacy but even moderate epsilon (< 5) leads to increased risk of fatality