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Today’s Topics
• Model Privacy

• Data Privacy
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Machine Learning as a Service (MLaaS)

User uploads training data, and then gets access to a 
black-box prediction model. ($$ per query)
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Model Extraction Attack

Applications:
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[Tramèr et al. ‘16]

[Stealing Machine Learning Models via Prediction APIs.
Tramèr et al. Usenix Security Symposium 2016]



Model Extraction Attack
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Main Results
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Example: Logistic Regression

𝑓 𝑥 =
1

1 + 𝑒!(#⋅%&')
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1 − 𝑓(𝑥)

=𝑤 ⋅ 𝑥 + 𝑏

Model extraction algorithm: query 𝑑 + 1 points and solve 
a linear system of 𝑑 + 1 equations

7

linear equation with 𝑑 + 1 unknown variables



Generic Equation-Solving Attack

• Solve non-linear equations for weights W
o Optimization + gradient descent
o >99% agreement between f and f’
o ~1 query per unknown weight
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Case Study on AWS
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Case Study on AWS
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Application: Model Inversion Attack
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Extracting a Decision Tree
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Countermeasures
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Generic Model Retraining Attack
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Attack performance with defenses
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Data Free Model Extraction
Attack performance depends 
on query image qualities
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[Data-Free Model Extraction. Truong et at. CVPR 2021]
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Data Free Model Extraction
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Data Free Model Extraction

• Drawback:
o Query budget is high (2M and 20M queries)

o Not an issue when attacking on-device ML models
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Data-Free Model Stealing with Hard Label
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[Towards Data-Free Model Stealing in a Hard Label Setting. Sanyal et at. CVPR 2022]



Data-Free Model Stealing with Hard Label

• Proxy data
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Data-Free Model Stealing with Hard Label
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Let’s Move On to Data Privacy



Data Privacy
• Common approach: anonymize sensitive data 

• Many ways to de-anonymize

• Unprotected ML model may leak training data information
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Generic Framework
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Data Model User
Query



Generic Framework
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Data User
Query

Interface
E.g., 

Database 
interface, 

or report of 
a study

How do we provide useful information to user, while 
preserving privacy of individuals in the data?  



Anonymization

26
https://www.cc.ntu.edu.tw/chinese/epaper/0040/20170320_4008.html

https://www.cc.ntu.edu.tw/chinese/epaper/0040/20170320_4008.html


Linkage Attack
87 % of US population uniquely identifiable by 5-digit ZIP, gender, DOB
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[Sweeney. ‘97]



Linkage Attack
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[Narayanan et al. ’08]



K-anonymity 
Ensure that each record is indistinguishable with other k-1 records
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K=4



K-Anonymity 
• Optimal k-anonymity is an NP-hard problem

• May remove too much information
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k=2



Attack to K-Anonymity 
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I-Diversity
Extension of K-anonymity
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Attack to I-Diversity: Skewness Attack 
• Suppose 10% of the population suffer from diabetes 

• In this subset, the probability of diabetes is much higher
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Attack to I-Diversity: Similarity Attack 
I-diversity does not consider the semantics of sensitive values!
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Many subsequent work
• t-closeness, m-invariance, delta-presence, …

• Still an active research area
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Model Inversion Attack
• Application in pharmacogenetics
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[Fredrikson et al. ‘14]

[Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing. 
Fredrikson et al. Usenix Security Symposium 2014]



Example Task: Warfarin Dosing
• Warfarin is the most popular anticoagulant in use today

• Warfarin is notoriously difficult to dose correctly

37

patient demographics

Medications, smoking 

status, etc…

relevant genotypes

target 

outcome



Example Task: Warfarin Dosing
• Studies show linear regression performs best
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Pharmacogenetic Privacy
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Pharmacogenetic Privacy
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Model Inversion
• Attacker knows:

o basic demographics
o black-box access to model
o stable warfarin dose
o marginal priors on patient distribution

• Goal: infer the patient’s genetic markers from this information
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Model Inversion Algorithm
1. Compute all values that agree with given information

2. Find the most likely values among those that remain
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Model Inversion Algorithm
When model is perfect
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Model Inversion Algorithm
When model is imperfect

can be estimated by confusion 
matrices or standardized regression error
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Limitation of This Method
• Inefficient if dimensions we want to recover are high

o e.g., image domain
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Model Inversion in Face Recognition
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[Fredrikson et al. ‘15]

[Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. 
Fredrikson et al. CCS 2015]



How Do We Achieve This?
• Gradient Descent! 

• Like adversarial attack, but needs some constraints in 
the direction that we move

• Follow the gradient until meets the confidence threshold
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Experiments
• Attack 3 models: softmax regression, multi-layer perceptron, 

stacked denoising autoencoder network 
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Black-box Attack
• Estimate each gradient with 2d black-box queries

• Works well for softmax regression (linear model)

• Takes too long for MLP and stacked DAE
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Possible Black-box Defense: Rounding

Output confidence values with less precision
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Other Applications
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[The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Carlini et al. Usenix Security Symposium 2019]



Other Applications
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[The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Carlini et al. Usenix Security Symposium 2019]

Shang-Tse’s

SSN is
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Extracting Training Data
• P(My SSN is 000-00-0000) = 0.01
• P(My SSN is 000-00-0001) = 0.02
• P(My SSN is 000-00-0002) = 0.01
• ….
• P(My SSN is 123-45-6788) = 0.00
• P(My SSN is 123-45-6789) = 0.32
• …
• P(My SSN is 999-99-9999) = 0.01
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Does It Work in Practice?
• The brute-force search needs too many queries 

• Better algorithm inspired by Dijkstra’s shortest path search

o Takes only 10! queries, four orders of magnitude fewer 
than the brute-force approach

56



Choose Between
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Exposure-based Testing Method
• If a model memorizes completely random canaries, it 

probably also is memorizing other training data
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Exposure-based Testing Method
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Exposure-based Testing Method
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Exposure
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Summary of the Testing Algorithm
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How to Choose Models?
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Provable Defense?
• Differential Privacy

o We will introduce this framework later in this course
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