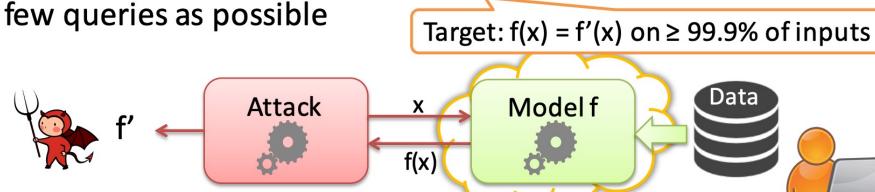
Security and Privacy of ML Model & Data Confidentiality

Shang-Tse Chen

Department of Computer Science & Information Engineering National Taiwan University

Today's Topics

- Model Privacy
- Data Privacy

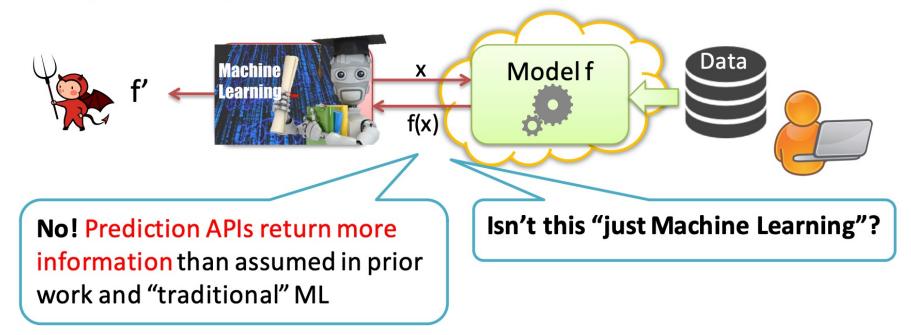

Machine Learning as a Service (MLaaS)

User uploads training data, and then gets access to a **black-box** prediction model. (\$\$ per query)

Model Extraction Attack [Tramèr et al. '16]

Goal: Adversarial client learns close approximation of f using as

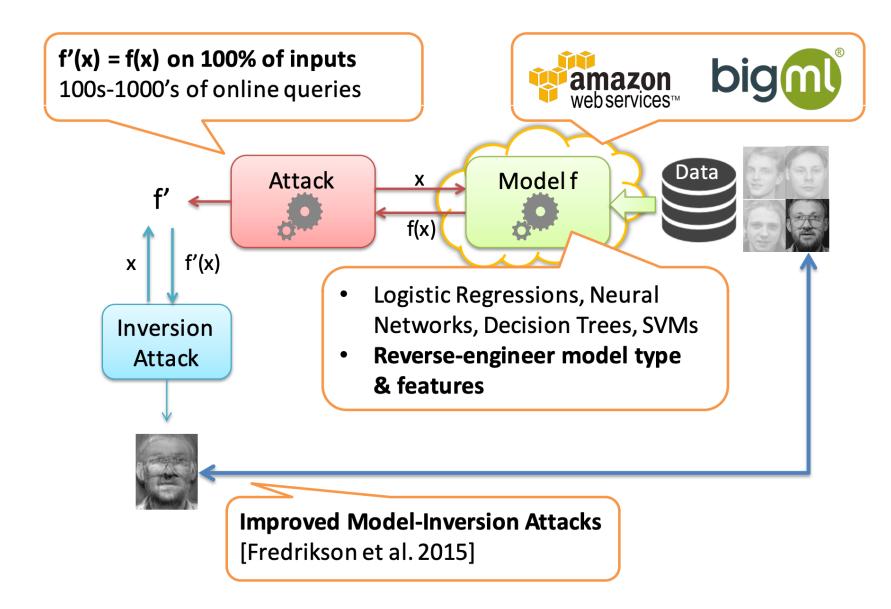
Applications:


- 1) Undermine pay-for-prediction pricing model
- 2) Facilitate privacy attacks
- 3) Stepping stone to model-evasion

[Stealing Machine Learning Models via Prediction APIs.

Tramèr et al. Usenix Security Symposium 2016]

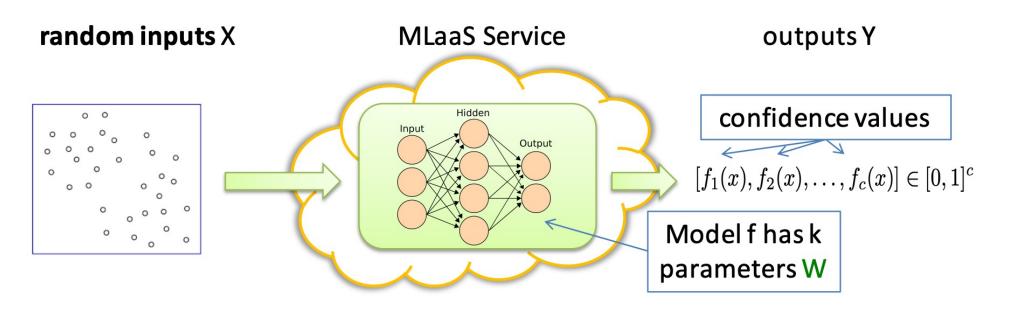
Model Extraction Attack


Goal: Adversarial client learns close approximation of f using as few queries as possible

If f(x) is just a class label: learning with membership queries

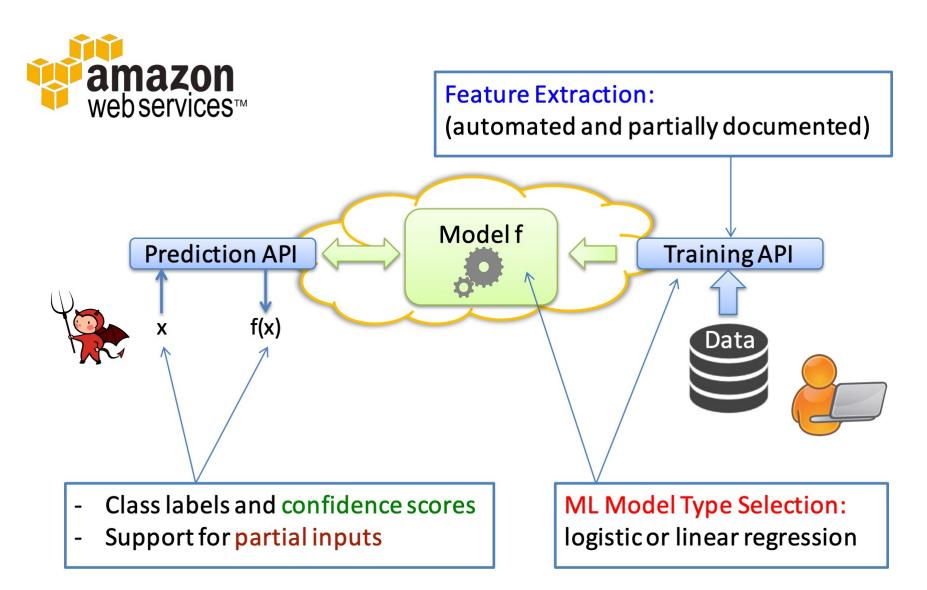
- Boolean decision trees [Kushilevitz, Mansour 1993]
- Linear models (e.g., binary regression) [Lowd, Meek 2005]

Main Results

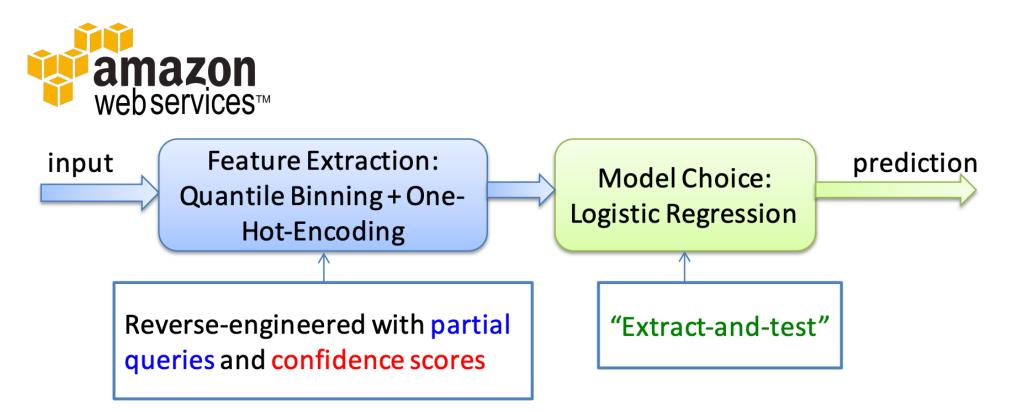

Example: Logistic Regression

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}} \quad \Rightarrow \quad \ln\left(\frac{f(x)}{1 - f(x)}\right) = w \cdot x + b$$

linear equation with d + 1 unknown variables

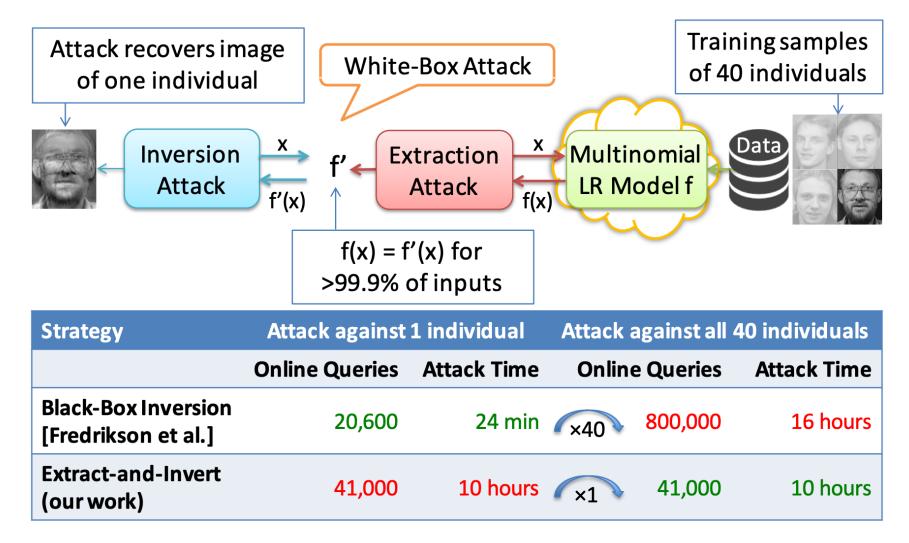

Model extraction algorithm: query d + 1 points and solve a linear system of d + 1 equations

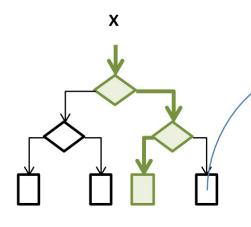
Generic Equation-Solving Attack



- Solve non-linear equations for weights W
 - Optimization + gradient descent
 - >99% agreement between f and f'
 - ~1 query per unknown weight

Case Study on AWS


Case Study on AWS


Model	Online Queries	Time (s)	Price (\$)
Handwritten Digits	650	70	0.07
Adult Census	1,485	149	0.15

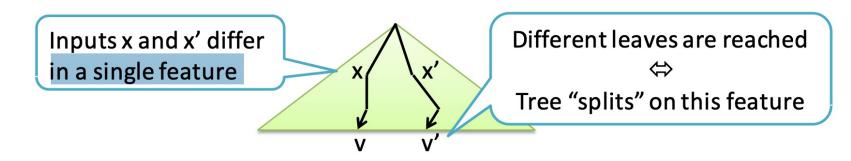
Application: Model Inversion Attack

Infer training data from trained models [Fredrikson et al. – 2015]

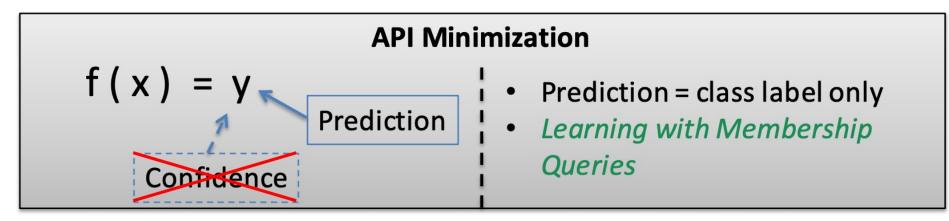
Extracting a Decision Tree

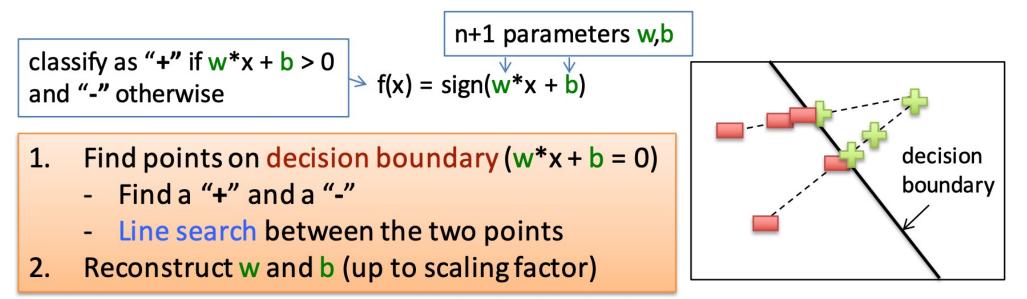
Confidence value derived from class distribution in the training set

Kushilevitz-Mansour (1992)

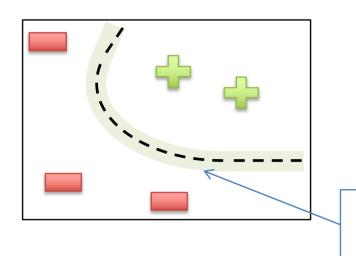

- Poly-time algorithm with *membership queries* only
- Only for Boolean trees, impractical complexity

(Ab)using Confidence Values

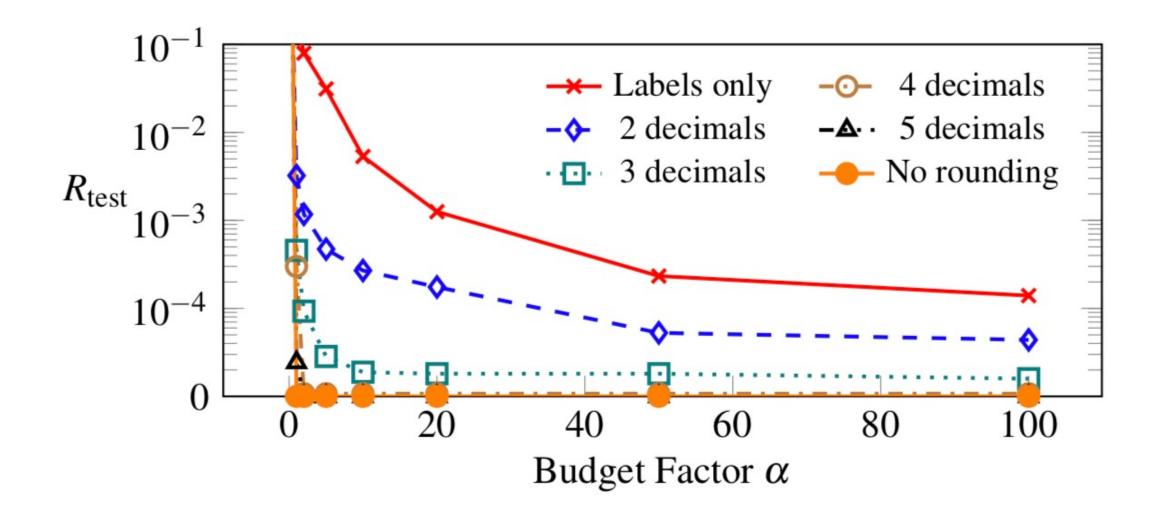

- <u>Assumption</u>: all tree leaves have unique confidence values
- Reconstruct tree decisions with "differential testing"


Online attacks on BigML

Countermeasures

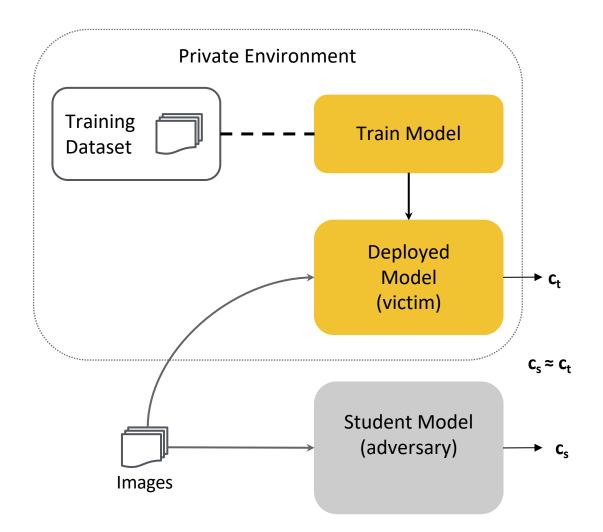


Attack on Linear Classifiers [Lowd, Meek – 2005]

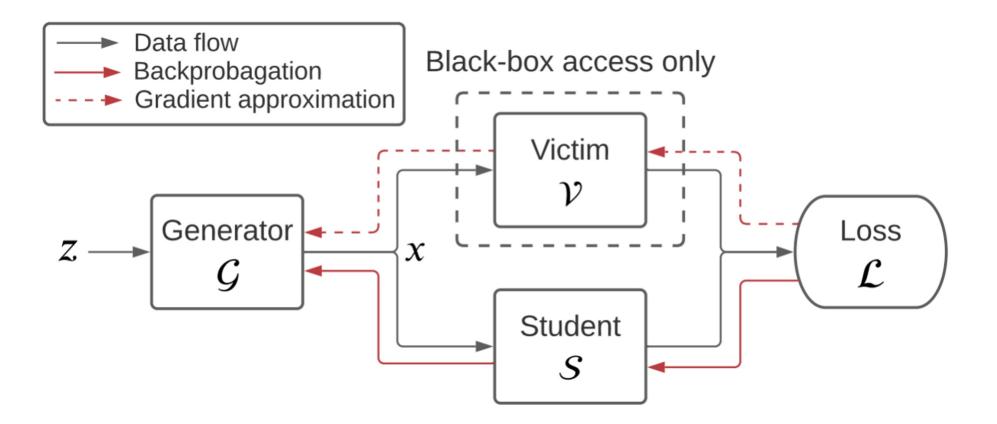

Generic Model Retraining Attack

- Extend the Lowd-Meek approach to non-linear models
- Active Learning:
 - Query points close to "decision boundary"
 - Update f' to fit these points
- Multinomial Regressions, Neural Networks, SVMs:
 - >99% agreement between f and f'
 - ≈ 100 queries per model parameter of f

≈ 100× less efficient than equation-solving


Attack performance with defenses

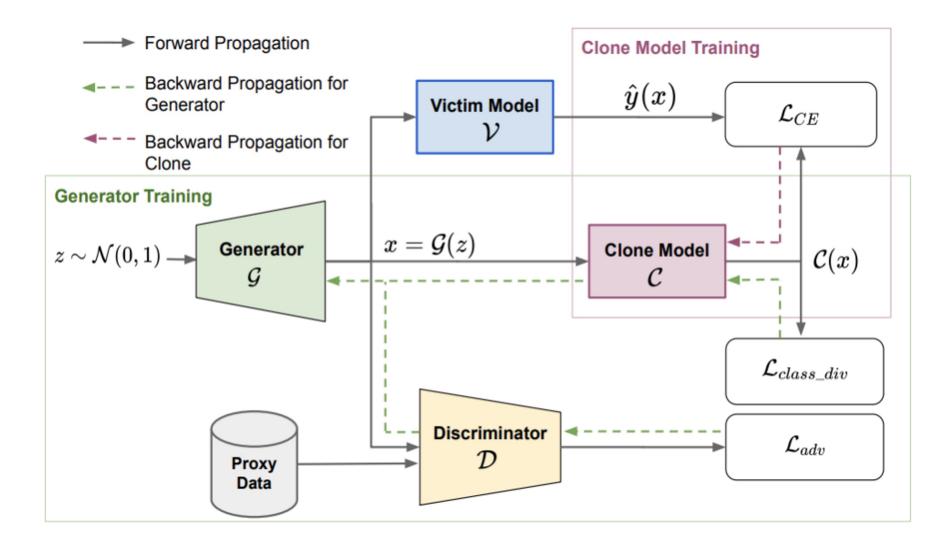
Data Free Model Extraction


Attack performance depends on query image qualities

	Victim	CIFAR10	CIFAR100	SVHN	MNIST	SVHN_{skew}	Random
CIFAR10	95.5%	95.2%	93.5%	66.6%	37.2%	-	10.0%
SVHN	96.2%	96.0%	-	96.3%	89.5%	96.1%	84.1%

[Data-Free Model Extraction. Truong et at. CVPR 2021]

Data Free Model Extraction


 $\min_{\mathcal{S}} \max_{\mathcal{G}} \mathbb{E}_{z \sim \mathcal{N}(0,1)} \left[\mathcal{L}(\mathcal{V}(\mathcal{G}(z)), \mathcal{S}(\mathcal{G}(z))) \right]$

Data Free Model Extraction

Dataset (budget)	Victim accuracy	DFME	Random
CIFAR10 (20M)	95.5%	88.1% (0.92×)	10.0%
SVHN (2M)	96.2%	95.2% (0.99×)	84.1%

- Drawback:
 - Query budget is high (2M and 20M queries)
 - Not an issue when attacking on-device ML models

Data-Free Model Stealing with Hard Label

[Towards Data-Free Model Stealing in a Hard Label Setting. Sanyal et at. CVPR 2022]

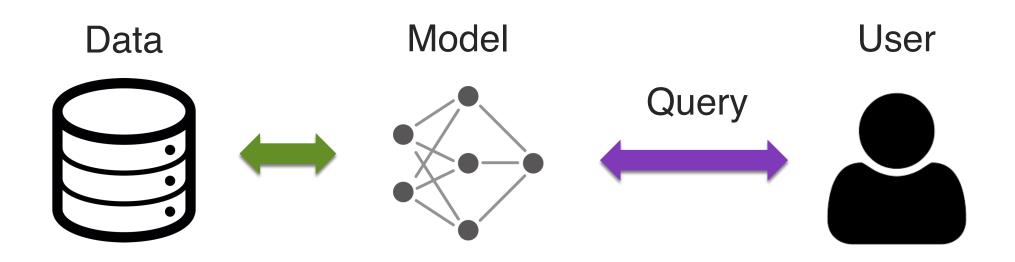
Data-Free Model Stealing with Hard Label

Proxy data

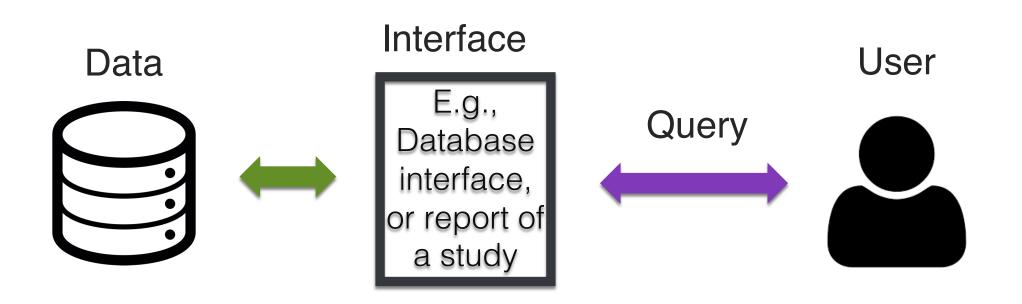
Synthetic DFMS-HL GAN Image: Synthetic interval i


Data-Free Model Stealing with Hard Label

Method	Hard Label	Black-Box	Data-Free	Victim Accuracy	Synthetic/ Data-Free	CIFAR-100 (40C)	CIFAR-100 (10C)
Victim Accuracy \sim 95.5%, Victim Model: ResNet-34							
MAZE [17]	×	\checkmark	\checkmark	95.50	45.60	-	-
DFME [34]	×	\checkmark	\checkmark	95.50	88.10	-	-
DFMS-HL (Ours)	\checkmark	\checkmark	\checkmark	95.59	84.51	92.06	85.53
DFMS-SL (Ours)	×	\checkmark	\checkmark	95.59	91.24	93.96	90.88


Let's Move On to Data Privacy

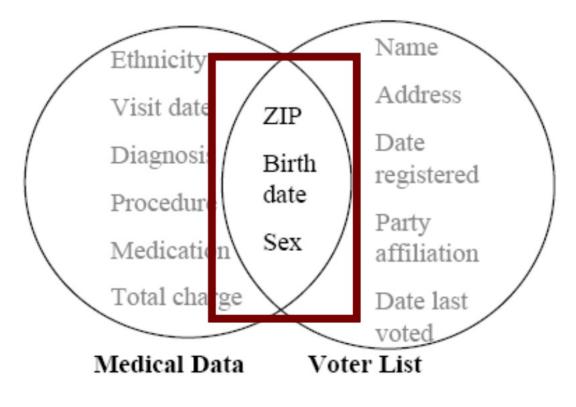
Data Privacy


- Common approach: anonymize sensitive data
- Many ways to de-anonymize
- Unprotected ML model may leak training data information

Generic Framework

Generic Framework

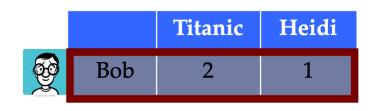
How do we provide useful information to user, while preserving privacy of individuals in the data?


Anonymization

https://www.cc.ntu.edu.tw/chinese/epaper/0040/20170320 4008.html

Linkage Attack

87 % of US population uniquely identifiable by 5-digit ZIP, gender, DOB


[Sweeney. '97]

Linkage Attack

Anonymized Netflix DB

	Gladiator	Titanic	Heidi
r ₁	4	1	0
\mathbf{r}_2	2	1.5	1
r_3	0.5	1	1

Publicly available IMDb ratings (noisy)

Used as auxiliary information

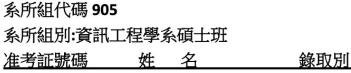
Weighted Scoring Algorithm

[Narayanan et al. '08]

K-anonymity

Ensure that each record is indistinguishable with other k-1 records

ID	Age	Zipcode	Diagnosis		ID	Age	Zipcode	Diagnosis
1	28	13053	Heart Disease		1	[20-30]	130**	Heart Disease
2	29	13068	Heart Disease		2	[20-30]	130**	Heart Disease
3	21	13068	Viral Infection		3	[20-30]	130**	Viral Infection
4	23	13053	Viral Infection	k-anonymization	4	[20-30]	130**	Viral Infection
5	50	14853	Cancer		5	[40-60]	148**	Cancer
6	55	14853	Heart Disease		6	[40-60]	148**	Heart Disease
7	47	14850	Viral Infection		7	[40-60]	148**	Viral Infection
8	49	14850	Viral Infection	K=4	8	[40-60]	148**	Viral Infection
9	31	13053	Cancer		9	[30-40]	13***	Cancer
10	37	13053	Cancer		10	[30-40]	13***	Cancer
11	36	13222	Cancer		11	[30-40]	13***	Cancer
12	35	13068	Cancer		12	[30-40]	13***	Cancer


K-Anonymity

k=2

- Optimal k-anonymity is an NP-hard problem
- May remove too much information

系所組別:資訊工程學系碩士班						
准考証號碼	姓名	錄取別	身份別			
905150072	林〇廷	正取	一般生			
905150079	許〇瑋	正取	一般生			
905150676	10	正取	一般生			
905150659	韓〇駿	正取	一般生			
905150671	余〇倫	正取	一般生			
905150028	曾〇棠	正取	一般生			
905170070	楊〇羽	正取	一般生			
905150285	丁〇安	正取	一般生			
905150480	潘〇辰	正取	一般生			

系所組代碼 905

9051正取一般生9051正取一般生9051正取一般生9051正取一般生9051正取一般生9051正取一般生9051正取一般生9051正取一般生9051正取一般生9051一一9051一一9051一一9051 <th><u>准亏 </u></th> <th> 或水中又万丁</th> <th>夕切別</th>	<u>准亏 </u>	 或水中又万丁	夕切別
9051 正取 一般生 9051 三 正取 一般生	9051	正取	一般生
9051 正取 一般生	9051	正取	一般生
9051 正取 一般生	9051	正取	一般生
9051 正取 一般生 9051 正取 一般生 9051 正取 一般生 9051 正取 一般生	9051	正取	一般生
9051 正取 一般生 9051 正取 一般生	9051	正取	一般生
9051 正取 一般生	9051	正取	一般生
	9051	正取	一般生
9051 正取 一般生	9051	正取	一般生
	9051	正取	一般生

自心印

Attack to K-Anonymity

	Homogen	eity attack	F	A 3-anor	ymou	s patient table
		,		Zipcode	Age	Disease
	Bob	1		476**	2*	Heart Disease
	Zipcode	Age		476**	2*	Heart Disease
	47678	27		476**	2*	Heart Disease
				4790*	≥40	Flu
Back	ground kn	owledge a	ttack	4790*	≥40	Heart Disease
	~	6	1	4790*	≥40	Cancer
	Carl	l		476**	3*	Heart Disease
	Zipcode	Age		476**	3*	Cancer
	47673	36		476**	3*	Cancer

31

I-Diversity

Extension of K-anonymity

		\frown
Caucas	787XX	Flu
Caucas	787XX	Shingles
Caucas	787XX	Acne
Caucas	787XX	Flu
Caucas	787XX	Acne
Caucas	787XX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Flu
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Shingles
Asian/AfrAm	78XXX	Acne
Asian/AfrAm	78XXX	Flu

Sensitive attributes must be "diverse" within each quasi-identifier equivalence class

Attack to I-Diversity: Skewness Attack

- Suppose 10% of the population suffer from diabetes
- In this subset, the probability of diabetes is much higher

Race	DOB	Sex	ZIP	Disease
black	64	F	941**	diabetes
black	64	F	941**	short breath
black	64	F	941**	diabetes
black	64	F	941**	diabetes

Attack to I-Diversity: Similarity Attack

I-diversity does not consider the semantics of sensitive values!

Similarity attack				
Bob				
Zip	Age			
47678	27			

Conclusion

- I. Bob's salary is in [20k,40k], which is relatively low
- 2. Bob has some stomach-related disease

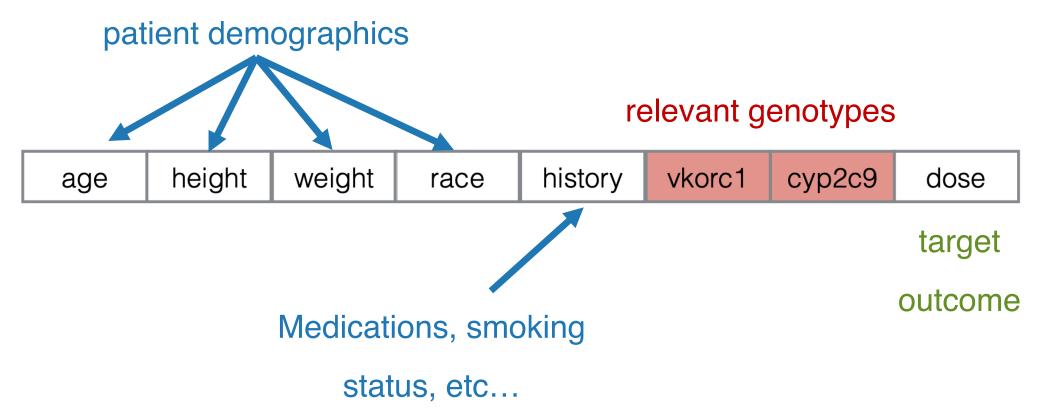
Zipcode	Age	Salary	Disease
476**	2*	20K	Gastric Ulcer
476**	2*	30K	Gastritis
476**	2*	40K	Stomach Cancer
4790*	≥40	50K	Gastritis
4790*	≥40	100K	Flu
4790*	≥40	70K	Bronchitis
476**	3*	60K	Bronchitis
476**	3*	80K	Pneumonia
476**	3*	90K	Stomach Cancer

A 3-diverse patient table

Many subsequent work

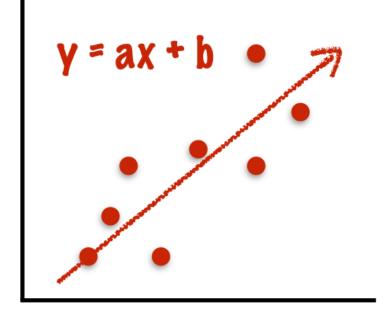
- t-closeness, m-invariance, delta-presence, ...
- Still an active research area

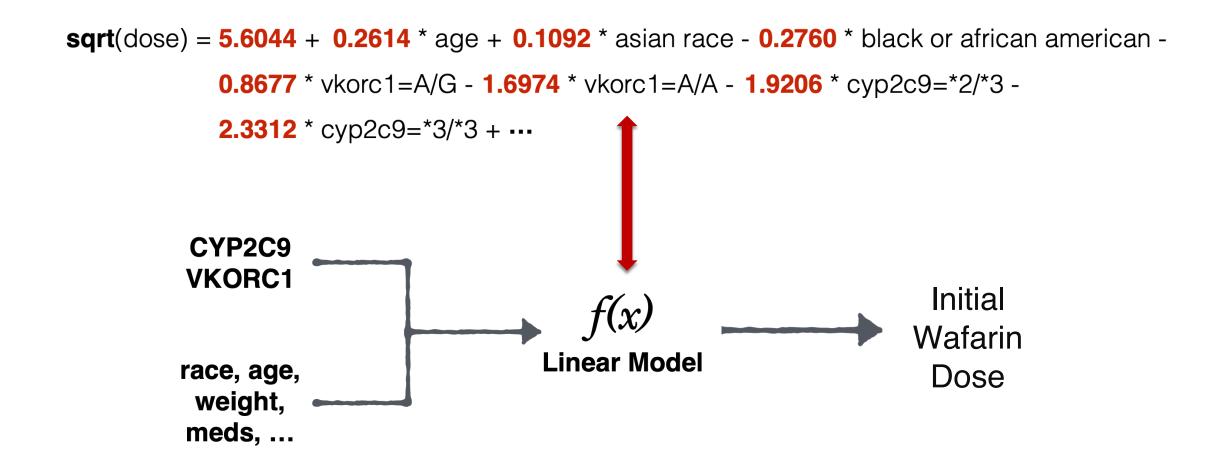
Model Inversion Attack [Fredrikson et al. '14]


Application in pharmacogenetics

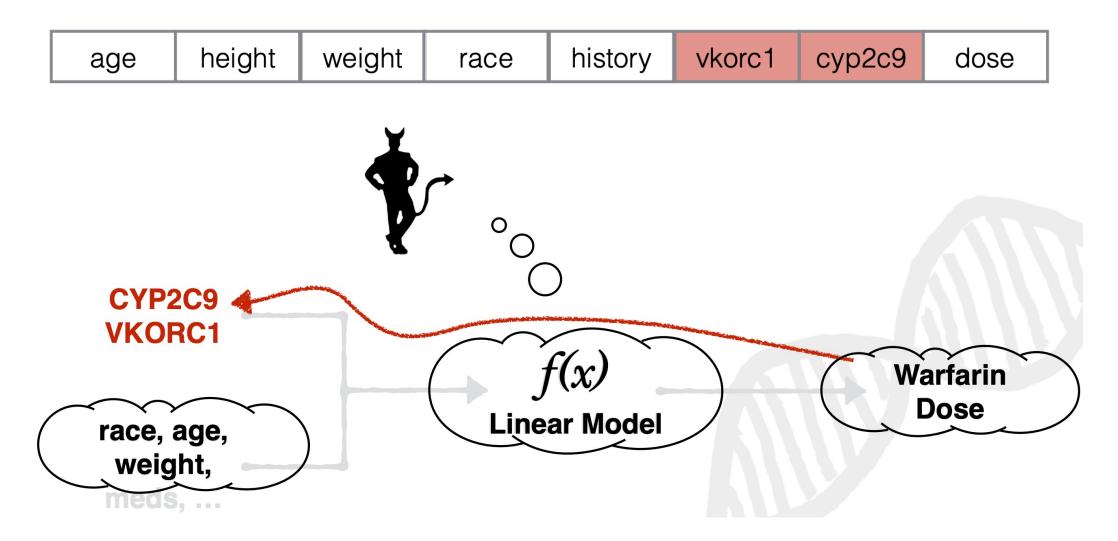
[Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing. Fredrikson et al. Usenix Security Symposium 2014]

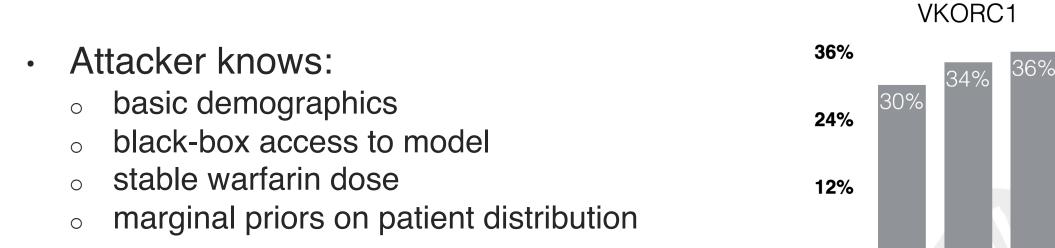
Example Task: Warfarin Dosing


- Warfarin is the most popular anticoagulant in use today
- Warfarin is notoriously difficult to dose correctly


Example Task: Warfarin Dosing

Studies show linear regression performs best


age height w	veight race	history	vkorc1	cyp2c9	dose
--------------	-------------	---------	--------	--------	------


Pharmacogenetic Privacy

Pharmacogenetic Privacy

Model Inversion

• Goal: infer the patient's genetic markers from this information

Model Inversion Algorithm

1. Compute all values that agree with given information

	age	height	weight	race	history	vkorc1	cyp2c9	dose		_
f(x)	50-59	176.53	144.2	white				42.0	49.7	p=0.23
	50-59	176.53	144.2	white				42.0	42.0	р=0.75
	50-59	176.53	144.2	white				42.0	39.2	p=0.01

2. Find the most likely values among those that remain

Model Inversion Algorithm

When model is perfect

Input: **z**_K = (x₁,...,x_k,y), f, p_{1,...,d,y}
Find the *feasible set* **X** ⊆ **X**, i.e., such that ∀**x** ∈ **X**

(a) **x** matches \mathbf{z}_K on known attributes: for $1 \le i \le k, \mathbf{x}_i = x_i$.

(b) f evaluates to y as given in \mathbf{z}_K : $f(\mathbf{x}) = y$.

3. If $|\hat{\mathbf{X}}| = 0$, return \perp .

4. Return x_t that maximizes $\sum_{\mathbf{x}\in\hat{\mathbf{X}}:\mathbf{x}_t=x_t}\prod_{1\leq i\leq d}p_i(\mathbf{x}_i)$

Model Inversion Algorithm

When model is imperfect

- 1. Input: $\mathbf{z}_{K} = (x_{1}, \dots, x_{k}, y), f, \pi, p_{1,\dots,d,y}$
- 2. Find the *feasible set* $\hat{\mathbf{X}} \subseteq \mathbf{X}$, i.e., such that $\forall \mathbf{x} \in \hat{\mathbf{X}}$
 - (a) **x** matches \mathbf{z}_K on known attributes: for $1 \le i \le k$, $\mathbf{x}_i = x_i$.

3. If
$$|\hat{\mathbf{X}}| = 0$$
, return \perp .

4. Return x_t that maximizes $\sum_{\mathbf{x}\in\hat{\mathbf{X}}:\mathbf{x}_t=x_t} \pi_{y,f(\mathbf{x})} \prod_{1\leq i\leq d} p_i(\mathbf{x}_i)$

 $\pi(y,y') = \Pr[\mathbf{z}_y = y | f(\mathbf{z}_x) = y']$ can be estimated by confusion matrices or standardized regression error

Limitation of This Method

- · Inefficient if dimensions we want to recover are high
 - e.g., image domain

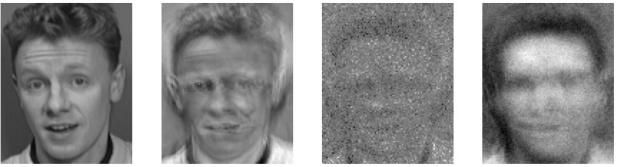
Model Inversion in Face Recognition

[Fredrikson et al. '15]

[Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.

Fredrikson et al. CCS 2015]

How Do We Achieve This?


- Gradient Descent!
- Like adversarial attack, but needs some constraints in the direction that we move

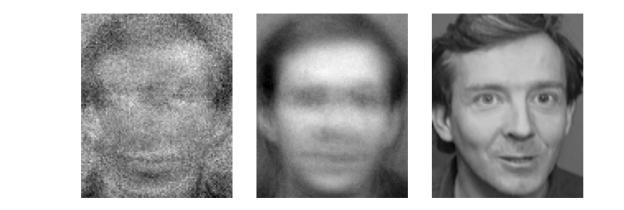
$$\mathbf{x}_i \leftarrow \operatorname{PROCESS}(\mathbf{x}_{i-1} - \lambda \cdot \nabla c(\mathbf{x}_{i-1}))$$

Follow the gradient until meets the confidence threshold

Experiments

Attack 3 models: softmax regression, multi-layer perceptron, stacked denoising autoencoder network

Target


 $\mathbf{Softmax}$

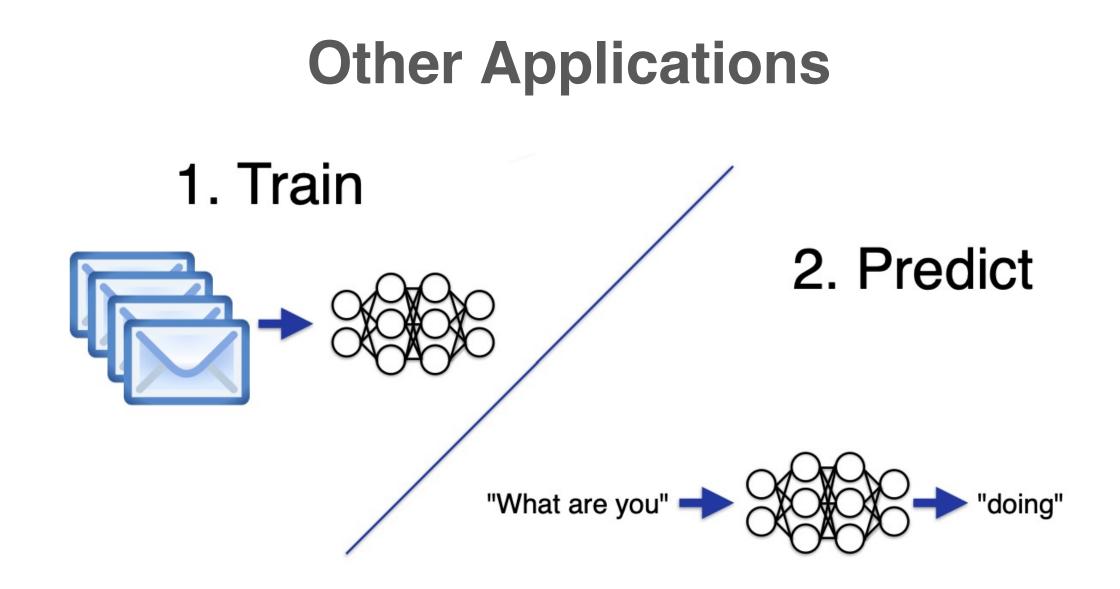
 \mathbf{MLP}

DAE

Algorithm 2 Processing function for stacked DAE.

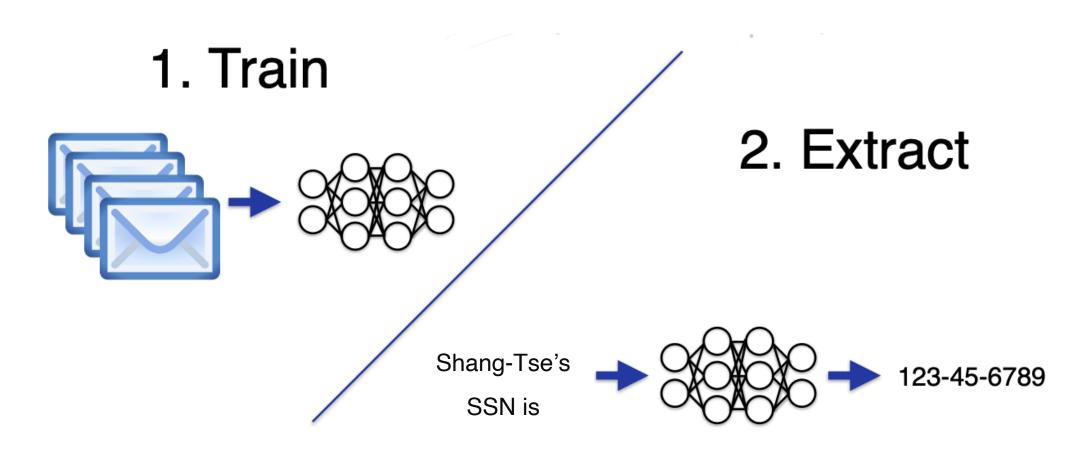
function PROCESS-DAE(\mathbf{x}) encoder.DECODE(\mathbf{x}) $\mathbf{x} \leftarrow \text{NLMEANSDENOISE}(\mathbf{x})$ $\mathbf{x} \leftarrow \text{SHARPEN}(\mathbf{x})$ return encoder.ENCODE(vecx)

Black-box Attack

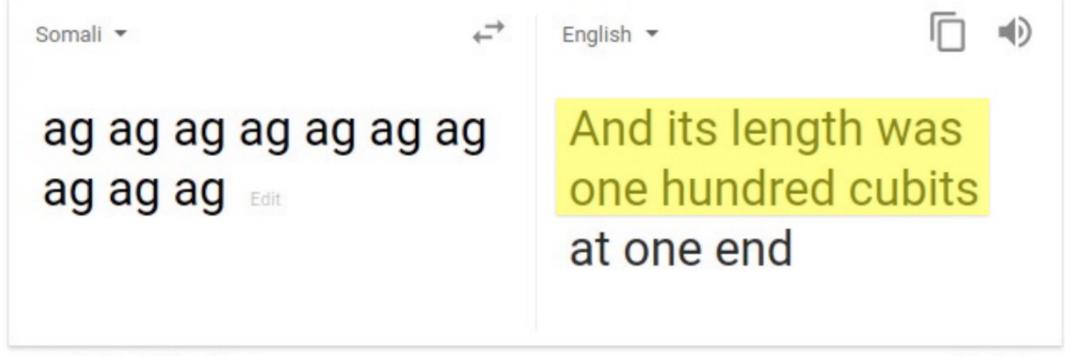

- Estimate each gradient with 2d black-box queries
- Works well for softmax regression (linear model)
- Takes too long for MLP and stacked DAE

Possible Black-box Defense: Rounding

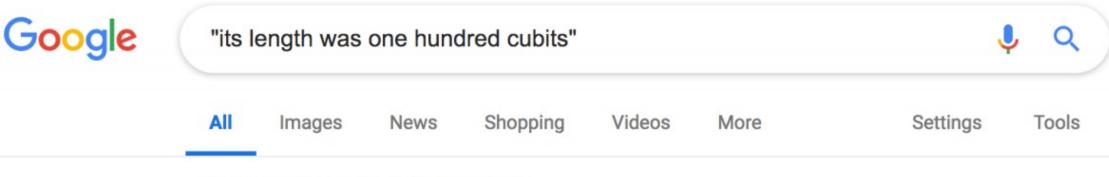
Output confidence values with less precision


no rounding r = 0.001 r = 0.005 r = 0.01 r = 0.05

[The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks


Carlini et al. Usenix Security Symposium 2019]

Other Applications


[The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks

Carlini et al. Usenix Security Symposium 2019]

Open in Google Translate

Feedback

About 2,850 results (0.17 seconds)

1 Kings 7:2 He built the House of the Forest of Lebanon a hundred ... https://biblehub.com/1_kings/7-2.htm ▼

For he built the house of the forest of Lebanon; its length was one hundred cubits, and its breadth fifty cubits, and its height thirty cubits, on four rows of cedar ...

1 Kings 7:2 NLT: One of Solomon's buildings was called the Palace of ... https://biblehub.com/nlt/1_kings/7-2.htm ▼

For he built the house of the forest of Lebanon; its length was one hundred cubits, and its breadth fifty cubits, and its height thirty cubits, on four rows of cedar ...

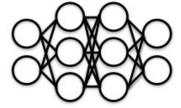
Extracting Training Data

- P(My SSN is 000-00-0000) = 0.01
- P(My SSN is 000-00-0001) = 0.02
- P(My SSN is 000-00-0002) = 0.01

```
• ....
```

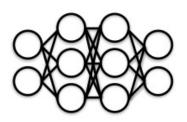
- P(My SSN is 123-45-6788) = 0.00
- P(My SSN is 123-45-6789) = **0.32**

• • • •


• P(My SSN is 999-99-9999) = 0.01

Does It Work in Practice?

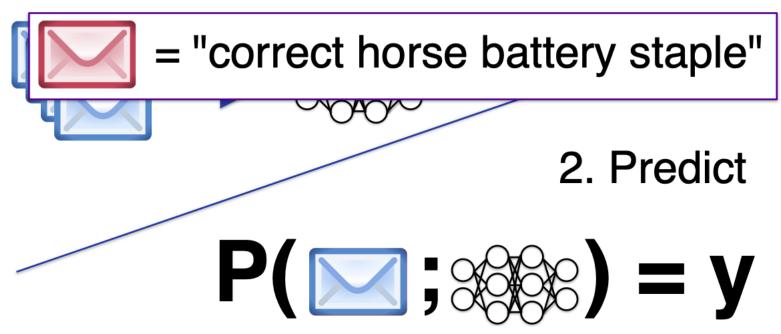
- The brute-force search needs too many queries
- Better algorithm inspired by Dijkstra's shortest path search
 - Takes only 10⁵ queries, four orders of magnitude fewer than the brute-force approach


Choose Between

Model A

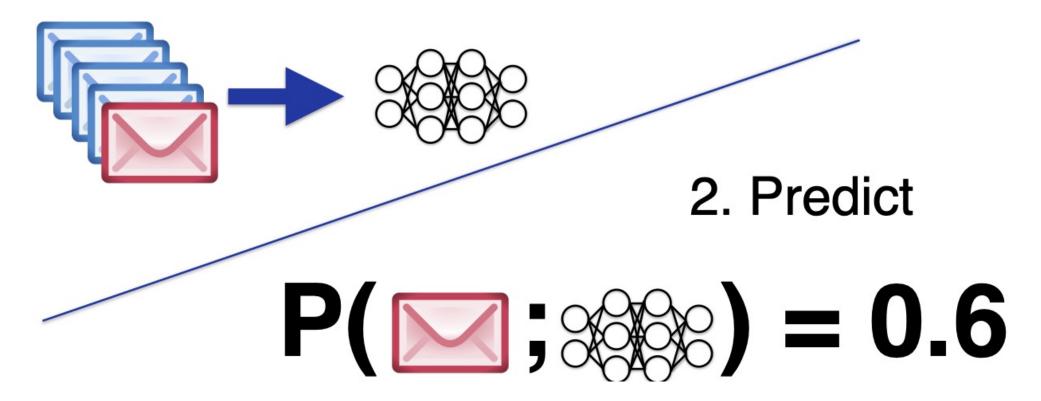
Accuracy: 96% High Memorization

Model B



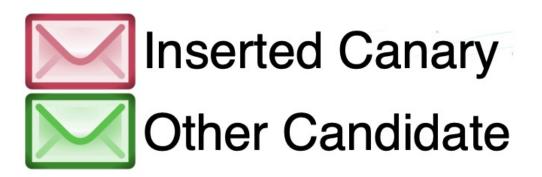
Accuracy: 92% No Memorization

Exposure-based Testing Method


 If a model memorizes completely random canaries, it probably also is memorizing other training data

1. Train

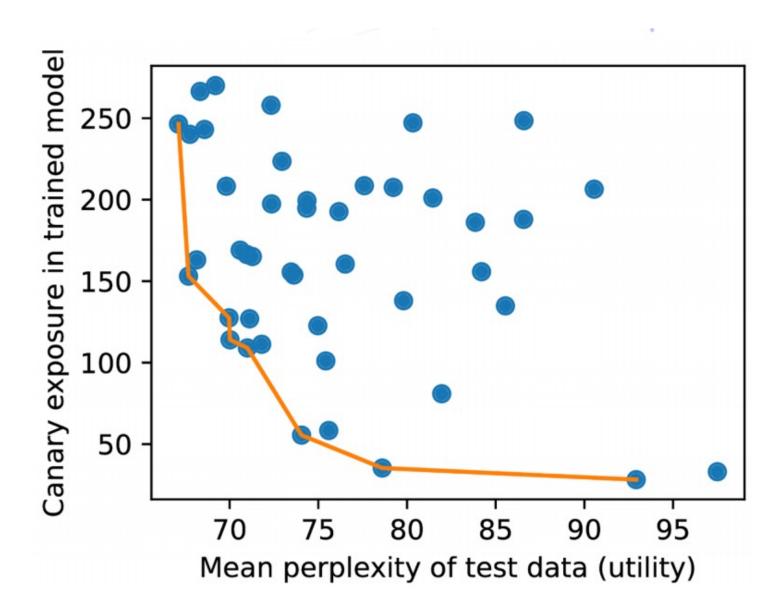
Exposure-based Testing Method


1. Train

Exposure-based Testing Method

1. Train 2. Predict g) = 0.1P

Exposure



expected P(\scilletty;)

Summary of the Testing Algorithm

1. Generate canary 🔀 2. Insert 🔀 into training data 3. Train model 4. Compute exposure of (compare likelihood to other candidates)

How to Choose Models?

Provable Defense?

- Differential Privacy
 - We will introduce this framework later in this course