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Let’s Move On to Training Time Attack
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Backdoor Attack
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Backdoor Attacks Txonomy
- Backdoor attacks taxonomy by Gao et al. (2020)

o Outsourcing attack

o Pretrained attack

o Data collection attack

o Collaborative learning attack
o Post-deployment attack

o Code poisoning attack

Gao et al. (2020) Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review



https://arxiv.org/abs/2007.10760

Outsourcing Attack

- User outsources model training to a 3rd party, a.k.a.
Machine Learning as a Service (MLaaS)

o E.g., due to lack of computational resources, ML expertise, or
other reasons

o A malicious MLaaS provider inserts a backdoor into the ML
model during the training process

- The user typically has collected data for their task



Outsourcing Attack

- Common approach for creating the attack is:

o Stamp a trigger to clean data samples, and change the label
for the samples with the trigger to a targeted class (also
known as dirty-label attack)

- Easiest attack to perform, since the attacker has:
o Full access to the training data and the model

o Control over the training process
o Gontrol over the selection of the trigger



Pretrained Attack

- Attacker releases a backdoored pretrained model

- Victim uses the pretrained model and finetunes it on
their dataset

- Attacker can download a popular pretrained ML model
(e.g., ResNet-50), insert a backdoor into the model, and
redistribute the backdoored model to the public



Data Collection Attack

- Victim collects data from public sources and is unaware
that some of the collected data have been poisoned

o The victim downloads data from the Internet

o The victim relies on contribution by (adversary) volunteers for
data collection

- The collected poisoned data can be difficult to notice,
and can bypass manual and/or visual inspection

o Often needs clean-label attack



Data Collection Attack

- Collecting training data from public sources is common

- More challenging, as the attacker does not have a
control over the training process

- Often requires some knowledge of the model to
determine the poisoned samples
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Targeted Clean-Label attack

[Shafahi et al. NeurlPS’18]

- Goal: make the model misclassify a target test example (into a
specific class)

- Attacker do not have control over the labeling process

- All training images appear to be labeled correctly according to
an expert observer
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Targeted Clean-Label attack

Training data

Testing example

i o e o o o A8 S B A S A P N S T
-

.....................................

INlakelany)
examplelotitioh
tnainfeet,

12



Targeted Clean-Label attack

Training data

Testing example
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Targeted Clean-Label attack

Training data Testing example
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How to Craft the Poisoning Example?

p = argmin [|f(x) — f(t)]5 + 8|x — b3

X
b: base instance

t: target instance
p: created poisoning instance

f: model logits output
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How to Craft the Poisoning Example?

Decision boundary
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How to Craft the Poisoning Example?

Decision boundary
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How to Craft the Poisoning Example?

Decision boundary
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Experiment Settings
- Transfer learning
o Freeze all previous layers and only train the final layer

- End-to-end re-training
o All weights are re-trained from scratch
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Transfer Learning Results

- dog vs fish with 1099 test instances
- 100% success rate with only one poisoning example

Target instances from Fish class

Poisons
mdf
dog
fro h
bas




Transfer Learning Results

- Target example is misclassified with high confidence

Results of 1099 experiments
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End-to-end Training Results

- Not very effective, compared with transfer learning
. f also changes after retraining , ,
p = argmin [|f(x) — f(t)[|z + B |x — b5

X

Feature space visualization of unsuccessful single-shot poisoning attack
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Additional Techniques

- Watermarking: blends features of the target instance into the

poisoning instance in a way humans can notice (y < 0.3)
b—~~y-t+(1—-7v)-b

- Multiple instance attack: create multiple poison instance

30%
H!HI!
N
. Candidate target Instance
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End-to-end Training Results

distance along orthonormal
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Feature space visualization of unsuccessful single-shot poisoning attack
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Data Collection Attack

- Malware Attack in Cybersecurity

*
N . .
Outsourced data Proprietary data
@ ﬁg — Gathering —_—— ML malware
& Labeling classifier
! | Preprocessing &
The platforms collect data Feature Extraction

and assign labels.

A
B
Model training

Users submit bingries to Attacker can now submit malware
crowdsourced threat intelligence containing the same backdoor. The

platforms for .e-valu.ation. model will be fooled into recognizing it
Attacker submits poisoned The company obtains the outsourced data and as benign.
benign files. uses it in the training of a ML malware classifier.

Severi et al. (2021) Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers
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Data Collection Attack
- Image Scaling Attack

+A4
srcimg
56*56
( ) e ] ScaleFunc()
targitlmg < Camouflage attckimg (ozustir;sg)
(28%28) Attack (56*56)

+A,

Xiao (2019) - Camouflage Attacks on Image Scaling Algorithms
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Collaborative Learning Attack

- A malicious agent in collaborative learning sends
updates that poison the model

- Collaborative learning or federated learning is designed
to protect the clients’ data privacy
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Collaborative Learning Attack

- Federated learning framework:

1.
2.
3.

T

ne server broadcasts the global model to all clients
ne local updates by the clients are sent to the server
ne server applies an aggregation algorithm to update the

.
.
9

obal model

SERVER

CLIENT 1 CLIENT 2 CLIENT 3 CLIENT 4
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Collaborative Learning Attack
- Distributed Backdoor Attack (DBA)
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[ federated learning aggregator ] [ federated learning aggregator ]
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Gt
(a) centralized backdoor attack (current setting) (b) DBA: dlstnbuted backdoor attack (ours)

Xie (2020) - DBA: Distributed Backdoor Attacks against Federated Learning
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Post-Deployment Attack

- The attacker gets access to the model after deployment

- The attacker changes the model to insert a backdoor
o does not rely on data poisoning to insert backdoors

- Weight tamper attack — the attacker changes the model
weights to create a backdoor

- Bit flip attack — the attacker flips bits in the memory of
the machine where the DNN is located, during runtime

Dong et al. (2023) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training
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Post-Deployment Attack

- This attack is challenging to perform, because it
requires that the attacker gets access to the model by
intruding the system where the model is located

- The advantage is that it can bypass most defenses
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Code Poisoning Attack

- Attacker publicly posts ML code that is designed to
backdoor trained models

- Victim downloads the code and use it to solve a task

- The model learns both the main task, and the backdoor

insertion task selected by the attacker

o Loss function developed by the attacker to achieve high
accuracy on both tasks

- The attacker does not have access to the training data,
or the trained model
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Backdoor Attack Summary
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Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review



Trigger is hard to detect

Benign Image Poisoned Image
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https://arxiv.org/pdf/2202.07183.pdf

https://arxiv.org/pdf/2202.07183.pdf
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Backdoor Attack for Good

- Model watermarking
o triggering the backdoor proves ownership of the model

o Zhang et al. “Protecting Intellectual Property of Deep Neural
Networks with Watermarking”, 2018

o Adi et al. “Turning Your Weakness Into a Strength - Watermarking
Deep Neural Networks by Backdooring”, 2018

o Gu et al. “Watermarking Pre-trained Language Models with
Backdooring”, 2023
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Defense from Training Data Analysis

Backdoored images have different frequencies after DCT
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https://openaccess.thecvf.com/content/ICCV2021/papers/Zeng_Rethinking_the_Backdoor_Attacks_Triggers_A_Frequency_Perspective_ICCV_2021_paper.pdf



Defense from Training Data Analysis

SPEED
LIMIT
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[Chen et al. SafeAI@ AAAI'18]

Classified as speed limit sign

Activation pattern is different from
those of the benign examples

ldea: cluster examples by activation
pattern
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ACtivation CI u Steri ng [Chen et al. SafeAI@AAAI'18]
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Defensed from Model Analysis
221 EEMPAEEENTERS—E feasible region B X X &I 1HIE

A2 ERPIETE B->A DIK C->A BUERBRER T E R R
23 EAE B->A LK C->A BIERREAE A

A i B : & - = - Decision Boundary
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. . 00000 © 000 O . (what is the trigger for the target label?)
Dimension Minimum A needed to Y -
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8835365 https://www.youtube.com/watch?v=krVLXbGdIEg&t=528s&ab_channel=IEEESymposiumonSecurityandPrivacy
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Classic Parameter Estimation

Given samples from an unknown distribution in some class

e.g. a 1-D Gaussian

N (p,0°)

<= =

can we accurately estimate its parameters?

Yes!

empirical mean: empirical variance:

1 & 1 &
NZX@'_)“ NZ(XZ'—X)Q—)OQ
=1 =1
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Robust Parameter Estimation

Given corrupted samples from a 1-D Gaussian

A

4 p—

< > — > < >
ideal model noise observed model

N (u,0%) | |
can we accurately estimate Its parameters?
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Assumption on Noise

Adversary can arbitrarily corrupt e-fraction of samples
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Total Variation Distance

Definition:

ry(f@),g@) 2 3 [ [1w)-gta)|de

— OO
Goal: find a 1-D Gaussian such that:

dTVJ\ >A§ O(e)

estimate ideal
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Do empirical mean and variance work?

N+ 1 =N

ideal model noise observed model

But the median and median absolute deviation do work

No!

MAD = median(|X;—median(X7, X9, ..., Xn)|)
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Theorem (folklore)

Given e-corrupted samples from a 1-D Gaussian N/(p, o)

the median and MAD recover estimates that satisty

dry (N (i, 0%), N(11,5%)) < O(e)
MAD
P=1(3/4)

where 11 = median(X), 0 =

46



To prove that the median of X ~ N (u,0?) is u, we verify:

Median Without Noise

[z
Pr(X<ﬂ)=/ Sx (%) dx = =

1

1 # (x—ﬂf>
exp| — d
o\V2m /_oo p( 202 x

H—H

gL ¥ —
V2o / V2 exp(_t2) dt substituting t = e
oV2w J_x V20
1 0
— exp(—tz) dr
4 —o0
1 0 )
— exp(—t ) dr Definite Integral of Even Function
24/ J_
T
i Gaussian Integral
2/7

47



Median With Noise

d(t) = [X <t] isthe cdf of the standard Gaussian

X~N(0 1)

Theorem: Let S: e-corrupted samples size n,

t>®1(1/2+¢)

Pr[|med(S) — p| > to] < 2exp(—2n(®(t) —1/2 —¢)?)
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Proof

- We show Pr[med(S) — u > to] < exp(—2n(®(t) — 1/2 — ¢)?)

- By scaling, we can assume w.l.o.g. thato =1

- med(S) is at most G e)-quantile Of Sgood » SINCE Sppq
contains only e fraction of points

- It suffices to show that the G + e)-quantile Of Syooq IS
not too large

49



Proof (cont.)

- Foreach i € Sy,44, let Y; be a {0,1}-valued r.v.

yo— b Aimp>t ﬂ

2 1 |
- Y; are i.i.d. Bernoullir.v. and E[Y;] = &(—t) = v 8t) ﬂaé—r

: G + e)-quantile of Sypoq > u + tiff D icS,. Yi = 1/2—¢
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Proof (cont.)
- By Chernoff bound, for all s>0:

1
Pr | — Z Y; >1—®(t) +s| <exp(—2ns?)

Plugin s = ®(t) — 1/2 — € proves the result
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MAD Without Noise

MAD = median(|X;—median( X7, X9, ..., Xn)|)

X — A
3 = Px —u <3aD) = P (| =] < F22) — (12

o =

& (MAD /o) — ® (— MAD /o) = 1/2 ﬂ
® (—MAD /o) =1— & (MAD /o)

MAD /o = &' (3/4) = 0.67449 —fiy
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Robustness in High Dimensions

Problem:

Given e-corrupted samples from a d-dimensional Gaussian

N (u,07)

give an efficient algorithm to find parameters that satisfy

P ~

dpy (N (1, 2), N (1, X)) < Oe)
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Special Cases

(1) Unknown mean A/ (, I)

(2) Unknown covariance _/\/’(()’ >)
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Can’t We Learn Coordinate-wise?

- Each coordinate yields error O(€), aggregating over all
d dimensions yield an error of 0(eVd)

- Large error in high dimensions

55



Tukey Median
. Define Tukey depth of a point n in S:

depth(S,n) = inf (X €S: (X —nv) 20}

[v][2=1 n

- Then Tukey median is defined as

Tukey(S) = arg max depth(S, n)
n

56



Tukey Median

- Tukey median achieve true mean with error O (€)

- But it is NP-hard to find the Tukey median
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Efficient Algorithm in High Dimensions

[Diakonikolas et al. FOCS’16]
The algorithm uses N = O(d’/¢?) samples from a

d-dimensional Gaussian N (u,Y) with e-corruption , and

finds parameters that satisfy

s

dpy (N (1, %), N (7,5)) < O(elog® 1/e)

Moreover, the algorithm runs in poly(N, d)
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Unknown Mean Case
Lomma:  dpy (W (1, 1), M (. ) < 1212

This can be proven using Pinsker’s Inequality

dry(f,g)* < % drr(f,9)

And properties of KL-divergence between Gaussians
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Unknown Mean Case

Lemma:

- i — Bl
dpy W, D), N(@, 1)) <
Corollary: If our estimate (in the unknown mean case) satisfies

| —7ill2 < O(e)

then dpy (N (p, 1), N'(7i, 1)) < O(e)
Our new goal is to be close in Euclidean distance
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Detecting Corruptions

- If the corruption move the mean, they also change the
covariance matrix

oo © N
OO ® 1
&0 ® = N > X
" ~ o i=1
® N “ @ = uncorrupted
® ®
@ @ = corrupted
® ®
o ©o0°

- We know the naive estimator has been compromised if
there is a direction of large (>1) variance
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Key Lemma
It X,,X,, ..., Xy come from e-corrupted N (u, ), and

N = 10(d + log%)/ez, then for

with probability at least 1-6

|1 —Till2 > Cey/log1/e == |5 = I||, > C'elog 1/e
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Filtering-based Algorithm
. Suppose that ||Z — I||s > C'elog1/e

- Find direction v of largest variance (top eigen vector)

- Project data in the direction of v and remove the
largest data points in this direction

- Repeat until there are not corrupted points left

Running Timezé(NdQ) Sample Complexity: 5(d2/62)
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Unknown Covariance Case

Again, by using Pinsker’s Inequality:

dTV(N(07 2)7/\[(07 i)) < O(”[

Our new goal is to find £ that satisfies:

1/222 I/QH )

|1 —Z7Y255712) 5 < Oe)
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Unknown Covariance Case

Key Idea: Transform the data, look for restricted large eigenvalues
Y; & (£)712X,

If i were the true covariance, we would have Y, ~ N(0,1)
for inliers, in which case:

1 Y T
LS o))
1=1

would have small restricted eigenvalues

Take-away: An adversary needs to mess up the (restricted) fourth
moment in order to corrupt the second moment
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Putting It All Together

1. Doubling trick: X; — X ~¢ N(0,2%)

o Now use algorithm for unknown covariance

2. Transform into isotropic position
Y2 X ~e N(E7Y20, 1)

o Now use algorithm for unknown mean
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Beyond Robust Statistics

- Can we “robustify” more complicated objectives, like
supervised learning? E.g., regression, SVM

- These problems can be solved in the framework of stochastic
optimization:

Given a loss function €(X, w) and a distribution D over X, minimize

fw) = Ex.p [£(X,w)]

- Challenge: Given e-corrupted samples from D, minimize f

67



SEVER: Robust Stochastic Optimization

. . [Diakonikolas et al. ICML’2019]
SGD with robust estimates

Wir1 < We — Nt " Ge
where g; Is a robust estimate of Vf (w;)

This straightforward approach is slow

ldea: only filter at minimizer of the empirical risk

remove outliers

and re-run

Data _ extract compute
{ (X,Y) H Fit Model Fgradients ‘{ SVvD '7 SSSSSS «‘ ‘L | J H 0 J
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SEVER: Robust Stochastic Optimization

[Diakonikolas et al. ICML’2019]

Theorem: Suppose £ is convex, and Cov [V€(X,w)] < ¢1. Under mild
assumptions on D, then SEVER outputs a W so that wh.p.

f (@) — min f (W) < 0 (Vo2e).
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Defense to Backdoor Attacks

. .. [Tran et al. NeurlPS’18]
- Representation space of training data:

SPEED
SPEED LIMIT

55 30

SPEED
LIMIT

10

Empirically, attack causes noticeable perturbation in the
covariance > Detect the corruption with previous
algorithm



Summary

- There exists an efficient algorithm for learning a
dimensional e-corrupted Gaussian

- Can be used in stochastic optimization problems

- May be used in general outlier detection

high-
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