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We’ve Discussed Testing Time Attack 

Training Data Testing Data

Adversarial Examples
(a.k.a. Evasion Attack)

≈



Let’s Move On to Training Time Attack

≈
Training Data Testing Data

Data Poisoning

Common 
assumption



Backdoor Attack
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Label: 
stop sign 

Label: 
speed sign 

Training
Testing

[Gu et al. arXiv;17]



5

Backdoor Attacks Txonomy
• Backdoor attacks taxonomy by Gao et al. (2020)
o Outsourcing attack
o Pretrained attack
o Data collection attack
o Collaborative learning attack
o Post-deployment attack
o Code poisoning attack

Gao et al. (2020) Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

https://arxiv.org/abs/2007.10760
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Outsourcing Attack
• User outsources model training to a 3rd party, a.k.a. 

Machine Learning as a Service (MLaaS)
o E.g., due to lack of computational resources, ML expertise, or 

other reasons
o A malicious MLaaS provider inserts a backdoor into the ML 

model during the training process

• The user typically has collected data for their task
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Outsourcing Attack
• Common approach for creating the attack is:
o Stamp a trigger to clean data samples, and change the label 

for the samples with the trigger to a targeted class (also 
known as dirty-label attack)

• Easiest attack to perform, since the attacker has: 
o Full access to the training data and the model
o Control over the training process
o Control over the selection of the trigger
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Pretrained Attack
• Attacker releases a backdoored pretrained model

• Victim uses the pretrained model and finetunes it on 
their dataset

• Attacker can download a popular pretrained ML model 
(e.g., ResNet-50), insert a backdoor into the model, and 
redistribute the backdoored model to the public
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Data Collection Attack
• Victim collects data from public sources and is unaware 

that some of the collected data have been poisoned
o The victim downloads data from the Internet
o The victim relies on contribution by (adversary) volunteers for 

data collection

• The collected poisoned data can be difficult to notice, 
and can bypass manual and/or visual inspection
o Often needs clean-label attack
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Data Collection Attack
• Collecting training data from public sources is common 

• More challenging, as the attacker does not have a 
control over the training process

• Often requires some knowledge of the model to 
determine the poisoned samples



Targeted Clean-Label attack
• Goal: make the model misclassify a target test example (into a 

specific class)

• Attacker do not have control over the labeling process

• All training images appear to be labeled correctly according to 
an expert observer 
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[Shafahi et al. NeurIPS’18]



Targeted Clean-Label attack
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Targeted Clean-Label attack
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Targeted Clean-Label attack
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How to Craft the Poisoning Example? 

b: base instance

t: target instance

p: created poisoning instance

f: model logits output 
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How to Craft the Poisoning Example? 
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How to Craft the Poisoning Example? 
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How to Craft the Poisoning Example? 
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Experiment Settings
• Transfer learning
o Freeze all previous layers and only train the final layer

• End-to-end re-training
o All weights are re-trained from scratch
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Transfer Learning Results
• dog vs fish with 1099 test instances
• 100% success rate with only one poisoning example
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Transfer Learning Results
• Target example is misclassified with high confidence
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End-to-end Training Results
• Not very effective, compared with transfer learning
• 𝑓 also changes after retraining 
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Additional Techniques
• Watermarking: blends features of the target instance into the 

poisoning instance in a way humans can notice (𝛾 ≤ 0.3)

• Multiple instance attack: create multiple poison instance
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End-to-end Training Results
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Data Collection Attack
• Malware Attack in Cybersecurity

Severi et al. (2021) Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers
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Data Collection Attack
• Image Scaling Attack

Xiao (2019) - Camouflage Attacks on Image Scaling Algorithms
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Collaborative Learning Attack
• A malicious agent in collaborative learning sends 

updates that poison the model

• Collaborative learning or federated learning is designed 
to protect the clients’ data privacy



28

Collaborative Learning Attack
• Federated learning framework:

1. The server broadcasts the global model to all clients
2. The local updates by the clients are sent to the server 
3. The server applies an aggregation algorithm to update the 

global model
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Collaborative Learning Attack
• Distributed Backdoor Attack (DBA)

Xie (2020) - DBA: Distributed Backdoor Attacks against Federated Learning
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Post-Deployment Attack
• The attacker gets access to the model after deployment

• The attacker changes the model to insert a backdoor
o does not rely on data poisoning to insert backdoors

• Weight tamper attack – the attacker changes the model 
weights to create a backdoor

• Bit flip attack – the attacker flips bits in the memory of 
the machine where the DNN is located, during runtime

Dong et al. (2023) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training
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Post-Deployment Attack
• This attack is challenging to perform, because it 

requires that the attacker gets access to the model by 
intruding the system where the model is located

• The advantage is that it can bypass most defenses
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Code Poisoning Attack
• Attacker publicly posts ML code that is designed to 

backdoor trained models

• Victim downloads the code and use it to solve a task

• The model learns both the main task, and the backdoor 
insertion task selected by the attacker
o Loss function developed by the attacker to achieve high 

accuracy on both tasks

• The attacker does not have access to the training data, 
or the trained model
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Backdoor Attack Summary

Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review 



Trigger is hard to detect

34

https://arxiv.org/pdf/2202.07183.pdf https://arxiv.org/pdf/2202.07183.pdf



Backdoor Attack for Good
• Model watermarking
o triggering the backdoor proves ownership of the model
o Zhang et al. “Protecting Intellectual Property of Deep Neural 

Networks with Watermarking”, 2018
o Adi et al. “Turning Your Weakness Into a Strength - Watermarking 

Deep Neural Networks by Backdooring”, 2018
o Gu et al. “Watermarking Pre-trained Language Models with 

Backdooring”, 2023
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Defense from Training Data Analysis

36
https://openaccess.thecvf.com/content/ICCV2021/papers/Zeng_Rethinking_the_Backdoor_Attacks_Triggers_A_Frequency_Perspective_ICCV_2021_paper.pdf

Backdoored images have different frequencies after DCT



Defense from Training Data Analysis
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• Classified as speed limit sign
• Activation pattern is different from 

those of the benign examples
• Idea: cluster examples by activation 

pattern 

[Chen et al. SafeAI@AAAI’18]



Activation Clustering
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[Chen et al. SafeAI@AAAI’18]



Defensed from Model Analysis
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8835365

觀察1: 在後門模型裡必定有一個 feasible region 與大家都接壤
觀察2: 在後門模型裡 B->A 以及 C->A 的距離總和必定短於在
乾淨模型裡 B->A 以及 C->A 的距離總和

https://www.youtube.com/watch?v=krVLXbGdlEg&t=528s&ab_channel=IEEESymposiumonSecurityandPrivacy
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Classic Parameter Estimation
Given samples from an unknown distribution in some class

can we accurately estimate its parameters?
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Yes!



Robust Parameter Estimation
Given corrupted samples from a 1-D Gaussian

can we accurately estimate its parameters?
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Assumption on Noise
Adversary can arbitrarily corrupt 𝜖-fraction of samples
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Total Variation Distance
Definition:

Goal: find a 1-D Gaussian such that:
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Do empirical mean and variance work?
No!

But the median and median absolute deviation do work
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Theorem (folklore)
Given 𝜖-corrupted samples from a 1-D Gaussian

the median and MAD recover estimates that satisfy
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Median Without Noise
To prove that the median of                         is 𝜇, we verify:

47



Median With Noise 
is the cdf of the standard Gaussian

Theorem: Let S: 𝜖-corrupted samples size n, 
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Proof
• We show

• By scaling, we can assume w.l.o.g. that 𝜎 = 1

• med(S) is at most !
"
+ 𝜖 -quantile of Sgood , since Sbad 

contains only 𝜖 fraction of points

• It suffices to show that the !
"
+ 𝜖 -quantile of Sgood is 

not too large
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Proof (cont.)
• For each 𝑖 ∈ S#$$%, let 𝑌& be a 0,1 -valued r.v.

𝑌& = ,1, 𝑋& − 𝜇 > 𝑡
0, 𝑋& − 𝜇 ≤ 𝑡

• 𝑌& are i.i.d. Bernoulli r.v. and

•
!
"
+ 𝜖 -quantile of Sgood  >  𝜇 + 𝑡 iff
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Proof (cont.)
• By Chernoff bound, for all s>0:

Plug in                                          proves the result
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MAD Without Noise
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Robustness in High Dimensions
Problem:

Given 𝜖-corrupted samples from a d-dimensional Gaussian

give an efficient algorithm to find parameters that satisfy

53



Special Cases

54



Can’t We Learn Coordinate-wise?
• Each coordinate yields error 𝑂(𝜖), aggregating over all 

d dimensions yield an error of 𝑂(𝜖 𝑑)

• Large error in high dimensions
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Tukey Median
• Define Tukey depth of a point 𝜂 in 𝑆:

• Then Tukey median is defined as 
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Tukey Median
• Tukey median achieve true mean with error 𝑂(𝜖)

• But it is NP-hard to find the Tukey median 
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Efficient Algorithm in High Dimensions 

The algorithm uses                         samples from a        

d-dimensional Gaussian              with 𝜖-corruption , and 
finds parameters that satisfy

Moreover, the algorithm runs in poly(N, d)
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[Diakonikolas et al. FOCS’16]



Unknown Mean Case
Lemma:

This can be proven using Pinsker’s Inequality

And properties of KL-divergence between Gaussians
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Unknown Mean Case
Lemma:

Our new goal is to be close in Euclidean distance
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Detecting Corruptions
• If the corruption move the mean, they also change the 

covariance matrix

• We know the naïve estimator has been compromised if 
there is a direction of large (>1) variance
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Key Lemma
If 𝑋!, 𝑋", … , 𝑋' come from 𝜖-corrupted 𝒩(𝜇, 𝐼), and

 𝑁 ≥ 10(𝑑 + log !
(
)/𝜖", then for
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Filtering-based Algorithm
• Suppose that

• Find direction 𝑣 of largest variance (top eigen vector)

• Project data in the direction of 𝑣	 and remove the 
largest data points in this direction

• Repeat until there are not corrupted points left
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Unknown Covariance Case
Again, by using Pinsker’s Inequality:

Our new goal is to find DΣ that satisfies:
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Unknown Covariance Case
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Putting It All Together
1. Doubling trick: 
o Now use algorithm for unknown covariance

2. Transform into isotropic position

o Now use algorithm for unknown mean
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Beyond Robust Statistics
• Can we “robustify” more complicated objectives, like 

supervised learning? E.g., regression, SVM

• These problems can be solved in the framework of stochastic 
optimization:

• Challenge: Given 𝜖-corrupted samples from 𝒟, minimize 𝑓

67



SEVER: Robust Stochastic Optimization
SGD with robust estimates

𝑤)*! ← 𝑤) − 𝜂) ⋅ 𝑔)
where 𝑔) is a robust estimate of ∇𝑓(𝑤))

This straightforward approach is slow

Idea: only filter at minimizer of the empirical risk
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[Diakonikolas et al. ICML’2019]



SEVER: Robust Stochastic Optimization
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[Diakonikolas et al. ICML’2019]



Defense to Backdoor Attacks
• Representation space of training data:

Empirically, attack causes noticeable perturbation in the 
covariance à Detect the corruption with previous 
algorithm 
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[Tran et al. NeurIPS’18]



Summary
• There exists an efficient algorithm for learning a high-

dimensional 𝜖-corrupted Gaussian 

• Can be used in stochastic optimization problems

• May be used in general outlier detection
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