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Certified Robustness

- Given a model f and a test sample (x, y)

. Exact certification:

o Answer YES if any allowed perturbation can not change y
o Answer No if successful adversarial perturbation exists

- Relaxed certification:
o Answer YES if any allowed perturbation can not change y
o Answer MAYBE if adversarial perturbation may exist



Exact Certification

Can be computed by Mixed integer linear programming (MILP)

Linear Programming (LP):

min, ¢'x

s.t. AX<b

MILP: some of the x variables are constrained to be integers




Exact Certification by MILP

Z]_ =T
ho(z) = Wyzg + by

Targeted attack in £, norm can be written as the optimization problem

T
mlrzlllguze (ey — eytarg) (Wyz4+by)

subject to z,,; = ReLU(W,2; #b;), ¢=1,...d—1
|21 =] <€



Pred: 7

Exact Certification by MILP

VA

min (e; —eg)" (Wy2zq +bg)
s.t. ...

min (e; — e1)" (Wyzq + by)
s.t. ...

= -2.54 (exists adversarial
example for target class zero
or another class)

= 3.04 (there is no adversarial
example to make classifier
predict class 1)



Exact Certification by MILP

21— T < €
||21—37Hoo§€ == Z1—$2—€

If we have a lower and upper bounds on x, i.e., x € [£,u]

z=RelLU(x) <) a=1[x = 0]

z<x —f(1—a)
Zz<u-a

Z =X

z=0




MILP is NP-hard

- In practice, off-the-shelf solvers (CPLEX, Gurobi, etc)
can scale to ~100 hidden units, but size depends
heavily on problem structure (including €)

- How do we get the bounds ¢ and u?

o If ¢ <z < u,then -
W I—[Wl_u+b<Wz+b< [W],u—[W]_l+b

where W* = max(W,0) and W~ = min(W, 0)



ReLU Stability

- Difficulty of MILP comes from the binary variables

- If sgn(¥) = sgn(u), we can remove the binary variable

- We can add a reqgularizer to encourage that
o —tanh(1+ ¢ -u)

_ _ [Xiao et a_ll. ICLR’19] _ _
- We can also increase weight matrix sparsity, which

makes MILP solver run faster



Limitations of Exact Certification

- Still very slow and not scalable

- Can only run on small models, which cannot obtain
state-of-the-art robust accuracy
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Convex Relaxation

Solving the integer program is too A
computationally expensive, so let’s
consider a convex relaxation

> VV@ZZ + b,,,
Replace the bounded RelLU
constraints with their convex hull

Optimization problem becomes a
linear program

> VV@ZZ—F[)Z
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Convex Relaxation

Original constraints:

New constraints:
Zi+1 2 0
Zi+1 2 WiZi -+ bi

u.
Zigg S ——(z; = 1Y)
u; — li
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Convex Relaxation

Convex relaxation provides a strict

lower bound on integer A A
programming objective (because N 00— %
feasible set is larger) s L
ObJeCthe(LP) < ObJ ective(IP) allowable perturbations Deep network adversarial polytope
So if the objective of LP is still l
positive for all target classes, the 1 A
relaxation gives a verifiable proof 3 - 0—0—0— %
that no adversarial example exists Ptz and” Finallayer and

allowable perturbations Deep network outer bound

L
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Fast solutions to the relaxation

Solving a linear program with size A

equal to the number of hidden units AP~
in the network (once per example), \

IS still not particularly efficient

Using linear programming duality, it

IS possible to achieve a lower

bound on the LP program, via a ) e
single backward pass through the

network [Wong and Kolter, 2018]



Pred: 7 ’
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Convex Relaxation

min (e; —eq)T (W, 24 +by) = -2.54 (exists adversarial

s.t. Binary IP constraints

min (e; —eg)" (Wyzq +by)
s.t. Convex constraints

l min (e; — ey )" (Wyzg + by)

s.t. Convex constraints

example for target class zero
or another class)

= -6.28 (may or may not exist
adversarial example)

= 1.78 (there is no adversarial
example to make classifier
predict class 1)
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Brief Summary

- Certified robustness guarantees that the all allowed
perturbations can not change classification output

o Exact certification via MILP
o Relaxed certification via convex relaxation to LP
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Certified Robustness by Randomized Smoothing

[Cohen et al. ICML’19]

It is easy to adversarially perturb x Decision boundary
such that the classifier f of classifier f
misclassifies it as “gibbon” ’

17



Randomized Smoothing [Cohen et al. ICML19]

g(x) = the most probable prediction by f of
random Gaussian corruptions of x

Example: consider the input x = y

Suppose that when f classifies M (x, 6%I)

©s is returned with probability 0.80

@ is returned with probability 0.15

LY is returned with probability 0.05
Then g(x) = %a




Class Probabilities Vary Slowly

If we shift this Gaussian, the probabilities of
each class can’t change by too much.

Therefore, if we know the class probabilities at
the input x, we can certify that for sufficiently
small perturbations of x, the %3 probability will
remain higher than the % probability.
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Robustness Guarantee

* Let p, be the probability of the top class (<)
* Let pg be the probability of the runner-up class (&)

* Then g provably returns the top class %< within an
£, ball around x of radius

R==(® " (ps) — @ *(pp))
where ®~1 is the inverse standard Gaussian CDF.

0.80
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Approximation by Sampling

- When f is a neural network, we can’t get the exact probabilities of
the smoothed classifier

- Use Monte Carlo sampling to compute upper and lower bounds
with high confidence
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Gaussian data augmentation

Makes the base classifier f more robust to Gaussian
noise

: W
T I L
Lo
i X %
BT, 0 /0. . YA

clean image corrupted by Gaussian noise

22



Formal Notations

Given a base classifier f: R? - U,
construct a smoothed classifier g as follows:

g(x):= argmax.cy Pe(f(x +€) =)

where € ~ N (0,041)

o controls the amount of noise Isotropic Gaussian:
restricted co-variance
matrix
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Robustness Guarantee

Suppose that: ¢, € Y and p,,pp € [0,1]  satisfy:

C4 is the most likely class

P.(f(x+€)=cy) 2 Pa2Pp 2 max P.(f(x+€)=c)

A lower bound on the true An upper bound on the true
highest probability p4 second-highest probability pg

24



Robustness Guarantee

Suppose that: ¢, € Y and py,pp € [0,1]  satisfy:

P.(f(x+€)=cy) 2 Pa >pg =max P.(f(x+¢€) =c)

C#:CA

Then:
gx+98)=cyforallll dll, <R where:

certification radius R: = %(¢—1(&) — & 1(pp))

and ®~1 is the inverse of the standard Gaussian CDF.
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Robustness Guarantee

If x~2N(0,1) and probability p € [0,1], then® 1(p) =v st. P,(x <v)=1p
®~1 is monotone: higher values of p produce higher values for ®~1(p)

For fixed noise o, to increase radius R, we want higher p, and lower pg.

Thus, it is important that classifier f is pre-trained to perform well under Gaussian noise.

Increasing noise o can increase
certified R but can reduce accuracy.

certification radius R: = %(Cb'l(&) — ®7'(pp))

®d~1 is the inverse of the standard Gaussian CDF.
26



Robustness Guarantee

O O O =
> o o =}

CDF of A0, 1)

ot
(N}

Note: result of ®1(p) can be
B T W e e negative but radius R is always

x positive due to @~ ! being
monotone and the theorem

requiring p4 = pp

o
o

certification radius R: = %(Cb"l(&) — o 1(pp))

®d~1 is the inverse of the standard Gaussian CDF.
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Certified and Standard Accuracy

Note: the certified radius R we obtain Thus, to compute certified accuracy, we
may differ between different input x’s pick a target radius T and count the number
because the true probabilities p, and of points in the test set whose certified
pg and correspondingly their lower and radius R =T and where the predicted
upper bounds, depend on the input x. cy matches the test set label. Standard

accuracy is instantiated with T = 0.

Then:
gx+6)=cyforalll| 61, <R where:

certification radius R: = %(Cb"l(@) — & 1(pp))

and ®~1 is the inverse of the standard Gaussian CDF.
28



Certification Procedure

function CERTIFY(f, o, x, ng, n, )
counts0 < SAMPLEUNDERNOISE(f, z,ng, o)
Ca < top index in counts0
counts < SAMPLEUNDERNOISE(f, z,n, o)
pa < LOWERCONFBOUND(counts|éal, n, 1 — @)
if p4 > 5 return prediction é4 and radius ¢ @' (p4)
else return ABSTAIN
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Certification Procedure

function CERTIFY(f, o, =, ng, n, )
counts0 <~ SAMPLEUNDERNOISE( f, z, ng, o)
Ca ¢ top index in countsO
counts < SAMPLEUNDERNOISE( f, z,n, o)
pa < LOWERCONFBOUND(counts|éa], n, 1 — a)
if p4 > % return prediction ¢4 and radius o = (pa)
else return ABSTAIN

To prevent selection bias,
sample first to find top label,
then sample again with the
number of samples n >> n,

SampleUnderNoise(f, x,n, o):

evaluates f atx + ¢; fori € {1, ...,n} where ¢; ~ NM(0,5%1) and

returns a dictionary of class counts.
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Certification Procedure

function CERTIFY(f, o, x, ng, n, @)
counts0 <~ SAMPLEUNDERNOISE( f, x,ng, 0)
Ca < top index in counts0
counts < SAMPLEUNDERNOISE( f, z,n, o)
pa < LOWERCONFBOUND(counts|éal, n, 1 — o)
if p4 > 5 return prediction ¢4 and radius c @ *(p4)
else return ABSTAIN

LowerConfBound(k,n,1 — a):

assumirég k ~ Binomial(n, p) for some unknown p, it returns probability p; such
that pi) p with probability 1 — a. That is, it finds a lower bound on this unknown

probability of success p.

There are many methods to compute confidence intervals, the smoothing paper
uses Clopper-Pearson.
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Certification: Guarantees

function CERTIFY(f, o, x, ng, n, @)
counts0 < SAMPLEUNDERNOISE(f, x,ng, o)
Ca < top index in counts0
counts < SAMPLEUNDERNOISE( f, z,n, o)
pa < LOWERCONFBOUND(counts[éal, n, 1 — o)
if p4 > 3 return prediction ¢4 and radius o @ *(p4)
else return ABSTAIN

To get the radius:

R=— (0 (pa) — @ " (Pp))

~ (@7 (pa) — 271 (1 — pa))

~ (@7 (pa) + @7 (Pa))
o " (pa)
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Certification: Guarantees

function CERTIFY(f, o, x, ng, n, @)
counts0 <~ SAMPLEUNDERNOISE( f, z, ng, o)
Ca ¢ top index in countsO
counts <~ SAMPLEUNDERNOISE( f,z,n,0)
pa < LOWERCONFBOUND(counts|éal, n, 1 — )

if p4 > % return prediction ¢4 and radius o @~ (pa)
else return ABSTAIN

Then we get the guarantee from the theorem:

with probability at least 1 — a, if CERTIFY returns class ¢; and
radius R = o @~ *(p,), then g(x + &) = & forall | § Il <R.
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Robustness vs. Accuracy

function CERTIFY(f, o, z, ng, n, @)
counts0 < SAMPLEUNDERNOISE( f, z, ng, o)
Ca < top index in countsO
counts < SAMPLEUNDERNOISE(f, z,n, o)
pa < LOWERCONFBOUND(counts|éa),n, 1 — o)

if pa > % return prediction ¢4 and radius o ! (p4)
else return ABSTAIN

Note: We certify that g returns the same class for all inputs in radius R not that

this output is necessarily correct (that is, same label as in the test set)!

There are several reasons why one may obtain an incorrect label

(incorrect includes abstentions).
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Robustness vs. Accuracy

function CERTIFY(f, o, x, ng, n, )
counts0 < SAMPLEUNDERNOISE( f, x, ng, 0)
Ca < top index in countsO
counts < SAMPLEUNDERNOISE( f, z,n, o)
pa < LOWERCONFBOUND(counts|éal, n, 1 — )

if p4 > % return prediction ¢4 and radius o = (pa)
else return ABSTAIN

Reason I:

With increasing noise o, it is more likely that the perfect smoothed classifier

g (x) returns c, which may not be the label in the test set.

35



Robustness vs. Accuracy

function CERTIFY(f, o, x, ng, n, )
counts0 < SAMPLEUNDERNOISE(f, z,ng, o)
Ca < top index in countsO0
counts < SAMPLEUNDERNOISE(f, z,n, o)
pa < LOWERCONFBOUND(counts|éal, n, 1 — @)
if p4 > 5 return prediction ¢4 and radius o ®~*(p4)
else return ABSTAIN

o = 0.25 og=0.5 c=1.0

Reason II:

Even if the perfect smoothed classifier returns c,4 in the test set, it is possible that
because: (i) ng is small, or (ii) the true probabilities p, and the next-best probability
are similar, we obtain a label ¢, which differs from the c4. And then, this almost

certainly will lead to abstention which will be counted as incorrect label. a6



Effect of Noise o on
Robustness and Accuracy

Each entry shows % of images in the test set (in this case ImageNet images), with provable radius > r and label as in test set.

r=00 | rells =10 =18 =20 =235 =30

o =0.25 0.67 0.49 0.00 0.00 0.00 0.00 0.00
o = 0.50 0.57 0.46 0.37 0.29 0.00 0.00 0.00
o = 1.00 0.44 0.38 0.33 0.26 0.19 0.15 0.12

Standard
Accuracy

We see that as noise increases, the standard accuracy drops but the certified robust radius

increases, the same trade-off between accuracy and robustness we discussed before with

adversarial training.

Reminder: all of these results are statistical in nature and not deterministic (due to sampling).

That is, they hold with high probability.



Increasing Certified Radius for Fixed
Noise ¢ May Require Many Samples

function CERTIFY(f, o, x, ng, n, o)
counts0 < SAMPLEUNDERNOISE( f, z, ng, o)
Ca < top index in counts0
counts < SAMPLEUNDERNOISE(f, z,n, o)
pa < LOWERCONFBOUND(counts[éal, n, 1 — o)

if pa > % return prediction ¢4 and radius o @~ " (pa
else return ABSTAIN

5

In the best case scenario where f always classifies to ¢y,
4

we have that with confidence 1 — a, a tight p, lower

2]

1 1 =
bound is a n. Plotting the resulting radius o-® 1(an) &>
for a =0.001 and 0 =1, we see that increasing the 1
number of samples will only slowly grow the radius. 0

10 10" 10°

number of samples 38



Inference

function PREDICT(f, o, x, n, @) )

counts <~ SAMPLEUNDERNOISE(f, z, n, 0)
CA,Cp < top two indices in counts

na,np < counts|céa], counts|[cg]

if BINOMPVALUE(n4,n4 + npg, 0.5) < a return ¢4
else return ABSTAIN _

Additional work needed at
inference time, which can
> be expensive, depending
on the number of samples

The null hypothesis is: the true probability of success of a Bernoulli trial is q.

BinomialPValue(i,n, q): returns the p-value of the null hypothesis, evaluated on n
statistically independent samples with i successes.

In our case, the null hypothesis: the true probability of f returning c; is g = 0.5
(meaning the classes are indistinguishable).



Inference

function PREDICT(f, o, =, n, o)
counts < SAMPLEUNDERNOISE(f, x, n, 0)
CA,Cp < top two indices in counts
na,np < counts|[ca], counts|cg]
if BINOMPVALUE(n 4, na + np, 0.5) < areturn cy
else return ABSTAIN

We accept the null hypothesis if the returned p-value is > a

We reject the null hypothesis if the returned p-value is < «

If a is small (typically 0.001) , then we may often accept the null hypothesis
and ABSTAIN, but we will be more confident in our predictions. If a is

higher, then we may make prediction more often, but make more mistakes.
40



Inference: Guarantees

function PREDICT(f, o, x, n, )
counts <~ SAMPLEUNDERNOISE(f, z, n, o)
CA,Cp < top two indices in counts
na,np < counts|ca], counts|cg]
if BINOMPVALUE(n 4, n4 + np, 0.5 < a return ¢4
else return ABSTAIN

We can prove that:

it returns the wrong class ¢, # ¢4 with probability at most a

41



Inference Guarantees: Proof Sketch
P(C4 # c4,n0 abstain)
= P(C4 # c4) - P(no abstain | T4 # cy4)

< IP(no abstain | T4 # c,4)

=a see Rank verification for exponential families, Hung & Fithian
The Annals of Statistics, 2019
https://arxiv.org/abs/1610.03944

IA
K
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certified accuracy

16

0.8

0.2

1.0

15

Scalable to ImageNet

=000 0¢=025 =050 o0=1.00

0=0.25

o=0.50

oc=1.00
------ undefended

20 25 30 35 40
radius

Note: the certified radii are much smaller than this noise.

R:% o1 p_A)—<I>_1ﬁ
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Future Research Direction

- Extension to other perturbation norms besides 4,
o Laplace noise for £; norm certified robustness

- Improve certified accuracy
o May be achieved by utilizing base classifier properties
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Is Certified Robustness All We Need?

Human vision is far from £,, distance

converged image
(best SSIM) 4

initial
image

. ;J converged image
" ye (worst SSIM)

[Wang & Bovik et al. IEEE signal processing magazine’09]

reference equal-MSE
image hypersphere



Small Changes Can Be Semantically Meaningful

0

Target Label 0

IMIIIIIIII

Correct Label 8

.“ .S ...-
Wi s & L-l

Target Label automobile bird cat deer dog airplane frog horse ship truck

<l T Y o A i

Correct Label ship deer frog dog ship ship  deer airplane airplane ship

Deflected
Attacks

Clean
Input

Deflected
Attacks

Clean
Input

[Qin et al. arxiv 2020]
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“Breaking” Certified Defenses

[Ghiasi et al. ICLR 2020]

(a) Natural image (x) (b) Adversarial perturbation (8) (c) Adversarial example (z + 9)

Figure 2: An adversarial example built using our Shadow Attack for the smoothed ImageNet classi-
fier for which the certifiable classifier produces a large certified radii. The adversarial perturbation
is smooth and natural looking even-though it is large when measured using /,-metrics. Also see
Figure 16 in the appendix.
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