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Theoretical verification taxonomy

Li, Linyi, Tao Xie, and Bo Li. "Sok: Certified robustness for deep neural networks." 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023.
Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified adversarial robustness via randomized smoothing.“ ICML, 2019.



Certified Robustness
• Given a model 𝑓 and a test sample (𝑥, 𝑦)

• Exact certification:
o Answer YES if any allowed perturbation can not change 𝑦
o Answer No if successful adversarial perturbation exists

• Relaxed certification:
o Answer YES if any allowed perturbation can not change 𝑦
o Answer MAYBE if adversarial perturbation may exist
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Exact Certification
Can be computed by Mixed integer linear programming (MILP)

Linear Programming (LP):

MILP: some of the x variables are constrained to be integers
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Exact Certification by MILP
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Exact Certification by MILP
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Exact Certification by MILP
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z = ReLU(x)
𝑧 ≤ 𝑥	 − ℓ(1 − 𝑎)

If we have a lower and upper bounds on 𝑥, i.e., 𝑥 ∈ ℓ, 𝑢

𝑎 = 𝟏 𝑥 ≥ 0

𝑧 ≥ 𝑥
𝑧 ≤ 𝑢 ⋅ 𝑎

𝑧 ≥ 0



MILP is NP-hard
• In practice, off-the-shelf solvers (CPLEX, Gurobi, etc) 

can scale to ~100 hidden units, but size depends 
heavily on problem structure (including 𝜖)

• How do we get the bounds ℓ and 𝑢?
o If ℓ ≤ 𝑧 ≤ 𝑢, then 
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where



ReLU Stability
• Difficulty of MILP comes from the binary variables

• If sgn ℓ = sgn 𝑢 , we can remove the binary variable

• We can add a regularizer to encourage that
o − tanh 1 + ℓ ⋅ 𝑢

• We can also increase weight matrix sparsity, which 
makes MILP solver run faster
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[Xiao et al. ICLR’19]



Limitations of Exact Certification 
• Still very slow and not scalable

• Can only run on small models, which cannot obtain 
state-of-the-art robust accuracy
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Convex Relaxation

11



Convex Relaxation
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Original constraints:

New constraints:
𝑧!"# ≥ 0
𝑧!"# ≥ 𝑊!𝑧! + 𝑏!
𝑧!"# ≤

𝑢!
𝑢! − 𝑙!

(𝑧! − 𝑙!)



Convex Relaxation
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Fast solutions to the relaxation
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Convex Relaxation
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Brief Summary
• Certified robustness guarantees that the all allowed 

perturbations can not change classification output
o Exact certification via MILP
o Relaxed certification via convex relaxation to LP
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Certified Robustness by Randomized Smoothing

It is easy to adversarially perturb 𝑥 
such that the classifier 𝑓 
misclassifies it as “gibbon”

17

Decision boundary 
of classifier 𝑓

[Cohen et al. ICML’19]



Randomized Smoothing
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[Cohen et al. ICML’19]



Class Probabilities Vary Slowly
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Robustness Guarantee
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Approximation by Sampling
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• When 𝑓 is a neural network, we can’t get the exact probabilities of 
the smoothed classifier

• Use Monte Carlo sampling to compute upper and lower bounds 
with high confidence



Gaussian data augmentation
Makes the base classifier 𝑓 more robust to Gaussian 
noise
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Formal Notations
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Robustness Guarantee
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Robustness Guarantee
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Robustness Guarantee
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Robustness Guarantee
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Certified and Standard Accuracy
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Certification Procedure
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Certification Procedure
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Certification Procedure
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Certification: Guarantees
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Certification: Guarantees
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Robustness vs. Accuracy
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Robustness vs. Accuracy
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Robustness vs. Accuracy
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Effect of Noise 𝝈 on 
Robustness and Accuracy
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Increasing Certified Radius for Fixed 
Noise 𝝈 May Require Many Samples
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Inference
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Inference
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Inference: Guarantees
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Inference Guarantees: Proof Sketch
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Scalable to ImageNet
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Future Research Direction
• Extension to other perturbation norms besides ℓ!
o Laplace noise for ℓ# norm certified robustness

• Improve certified accuracy
o May be achieved by utilizing base classifier properties
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Is Certified Robustness All We Need?
Human vision is far from ℓ$ distance

[Wang & Bovik et al. IEEE signal processing magazine’09]
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Small Changes Can Be Semantically  Meaningful

[Qin et al. arxiv 2020]
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“Breaking” Certified Defenses
[Ghiasi et al. ICLR 2020]


