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Homework 1: Gray-box Attack

2

• Generate adversarial images on CIFAR-100

• Download the validation set of 500 images and submit 
the perturbed versions of them

• Allowed perturbation strength: 𝛿 ! = 8, i.e., you can 
change each pixel up to 8 on the scale of [0, 255]

https://www.cs.toronto.edu/~kriz/cifar.html


Homework 1: Gray-box Attack

5 standardly trained 
models from this Github
repo will be used, 
possibly with some 
preprocessing steps
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https://github.com/osmr/imgclsmob

mailto:https://github.com/osmr/imgclsmob


Homework 1: Gray-box Attack
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• You can use any packages

• Check out official tutorials on adversarial attacks with 
Tensorflow or PyTorch if you’ve never done it before

• Your submission will be evaluated on 5 models

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
https://pytorch.org/tutorials/beginner/fgsm_tutorial.html
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• General rule of thumb:

o Your attack tends to be stronger / more transferable if you 
can simultaneously attack multiple models (i.e., ensemble)

o Single step methods (e.g., FGM) usually more transferable 
than iterative methods (e.g., PGD)

Homework 1: Gray-box Attack
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• You can get some ideas / insights from:
o Past competitions (NIPS 2017, 2018)
o CIFAR10 Adversarial Examples Challenge

Homework 1: Gray-box Attack

https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-attack
https://www.crowdai.org/challenges/nips-2018-adversarial-vision-challenge-untargeted-attack-track
https://github.com/MadryLab/cifar10_challenge
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• Write a report with at most 4 pages in NeurIPS format
o Methods you tried
o Why you choose certain methods in your submission
o Experiments that you did
o Findings or insights you gained

Homework 1: Report
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• Grading Policy:
o Accuracy : 5%
o Report: 5%

§ Clarity
§ Experiments / Comparison of different approaches
§ Novelty

Homework 1: Grading



Student Group Presentation
• Enter your team members and topic preferences in this 

Google form by Friday

• Topics and dates are announced on the course website

• Submit your slides by 6 pm before the presentation day
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https://docs.google.com/forms/d/e/1FAIpQLSez4D0JZ6rwOy6A9GaeYt4FxiP2MAQsdxPt5HCzhKtNHxOw2g/viewform


Review From Last Week
• Given a classifier 𝐶 and an example 𝑥, find an adversarial 

example 𝒙′, s.t. 𝑑 𝒙′, 𝒙 ≤ 𝜖, and 𝐶 𝒙′ ≠ 𝐶(𝒙)

• The distance function 𝑑 ⋅,⋅ is application dependent
o For mathematical convenience, ℓ! distance is often used

𝒙 − 𝒙′ ! = &
"#$
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Training and Attack Are Dual Problems
• Training:

min
𝜽

'
(𝒙,&)∈)

ℓ(𝒙, 𝑦; 𝜽)

• Attack:
max
𝜹∈𝚫

ℓ(𝒙 + 𝜹, 𝑦; 𝜽)

max
𝜹∈𝚫

− ℓ(𝒙 + 𝜹, 𝑦′; 𝜽)
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Gradient descent to 
update model weights 𝛉

Gradient descent to 
update input 𝒙(untargeted)

(targeted)



Fast Gradient Method (𝑳𝟐)
ℓ 𝒙 + 𝜹, 𝑦; 𝜽 ≈ ℓ 𝒙, 𝑦; 𝜽 + 𝜹 ⋅ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽

Maximize
ℓ 𝒙, 𝑦; 𝜽 + 𝜹 ⋅ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽

subject to
𝛿 & ≤ 𝜖

è

𝛿 = 𝜖 ⋅
∇𝒙ℓ(𝒙, 𝑦; 𝜽)
∇𝒙ℓ 𝒙, 𝑦; 𝜽 &
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[Goodfellow et al., 2014]



Fast Gradient Method (𝑳7)
ℓ 𝒙 + 𝜹, 𝑦; 𝜽 ≈ ℓ 𝒙, 𝑦; 𝜽 + 𝜹 ⋅ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽

Maximize
ℓ 𝒙, 𝑦; 𝜽 + 𝜹 ⋅ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽

subject to
𝛿 ' ≤ 𝜖

è
𝛿 = 𝜖 ⋅ sign 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽
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Also known as Fast Gradient Sign Method (FGSM)



Fast Gradient Method (𝑳𝟏)
ℓ 𝒙 + 𝜹, 𝑦; 𝜽 ≈ ℓ 𝒙, 𝑦; 𝜽 + 𝜹 ⋅ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽

Maximize
ℓ 𝒙, 𝑦; 𝜽 + 𝜹 ⋅ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽

subject to
𝛿 $ ≤ 𝜖

è
i∗ = argmax+ 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽 "

𝛿" = A𝜖 ⋅ sign 𝛁𝐱ℓ 𝒙, 𝑦; 𝜽 𝒊 , if 𝑖 = 𝑖∗
0, otherwise
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Let’s move on to defenses
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• White-box attacks
• Attacker knows
o Model architecture
o Model weights
o Pre-processing / Post-processing

• Black-box attacks
• Attacker may or may not know 
o Algorithm (DNN, SVM, …)
o Features
o Model architecture
o Model weights
o …

Threat Models



Defenses in Black-box Settings
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• Many papers published on daily basis

• The attacker has zero/little knowledge of the defense

• Usually (easily) breakable in the white-box setting

• Still useful when you want defenses that are scalable 
and ready-to-use



Approaches in Defenses
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• Data pre-processing
o Remove adversarial noise before feeding to the model

• Model hardening
o Modify architecture and/or training process

• Detection (will be discussed in student presentation)
o Detecting adversarial examples before classification



SHIELD: A Fast, Practical Defense using JPEG
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[Das et al. KDD’18]



Stochastic Local Quantization (SLQ)
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SHIELD is Fast
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Runtimes in processing 50k ImageNet images (in seconds; shorter is better)
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UnMask: Knowledge-Based Defense [Freitas et al. ’20]



Defense-GAN

23

• Train a generator on benign data
• Use the closest generated example for classification in testing
• Claimed to be robust in white-box and black-box settings

[Samangouei et al. ICLR’18]



Defenses in Black-box Settings
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• A form of “security through obscurity”

• Very hard to do evaluation properly

• Not that interesting in academic research now



Defenses in White-box Settings
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• Also many papers published everyday

• Most of them are found ineffective quickly because
o Stronger attacks come up
o Evaluation not thorough enough



Pipeline of Defense Failures
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No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]



Pipeline of Defense Failures

27
No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]

Prevent Overfitting, e.g., Dropout at Train Time



Pipeline of Defense Failures
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No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]

Weight Decay



Pipeline of Defense Failures
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No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]

Cropping, and most preprocessing methods



Pipeline of Defense Failures
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No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]

Adversarial Training with a Weak Attack



Pipeline of Defense Failures
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No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]

Defensive Distillation / Adversarial Logit PAiring



Defensive Distillation
• Was once considered strongest defense
• Broken by transfer attack

32



Adversarial Logit Pairing
• Idea: The logits for the benign and adversarial 

examples should be close

• Add a regularization term 𝜆 ⋅ 𝐿 𝑓 𝑥 , 𝑓 𝑥′ in training

• Was the state-of-the-art defense for some time

• Broken by simply increasing #iterations of PGD (up to 
1000 iterations) [Engstrom et al., '18] .
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[Kannan et al., '18]



Pipeline of Defense Failures
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No effect on advx

Reduces advx, but reduces clean accuracy too much

Does not affect adaptive attacker

Does not generalize over attack algos

Seems to generalize, but it’s an illusion

Does not generalize over threat models

[Slides from Goodfellow 2018]

Adversarial Training with a Strong Attack



Obfuscated Gradients
• Many defenses are messing with gradient to make 

gradient-based attacks harder to find successful 
adversarial examples

• This does not actually make the model more robust

35

[Athalye et al. ICML’18]



Obfuscated Gradients
Thought experiment:
o Instead of probability distribution, let the model only outputs 

the most likely class
o Small perturbation does not change output
o Gradient is almost always zero
o Model still has same blind-spots, just harder to find now
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[Athalye et al. ICML’18]



Obfuscated Gradients
Three major types:
• Shattered Gradients
• Stochastic Gradients
• Exploding & Vanishing Gradients

37

[Athalye et al. ICML’18]



Obfuscated Gradients
7 out of 9 white-box defenses in ICLR 2018 rely on this
o 6 of them are completely broken (~0% accuracy)
o Defense-GAN achieves ~55% accuracy on MNIST

38

[Athalye et al. ICML’18]



Identify Obfuscated Gradients
1. One-step attacks perform better than iterative attacks
2. Black-box attacks are better than white-box attacks
3. Unbounded attacks do not reach 100% success
4. Random sampling finds adversarial examples
5. Increasing distortion bound does not increase success

39

[Athalye et al.
ICML’18]



Attack technique 1: BPDA
Backward Pass Differentiable Approximation
1. Forward pass through the original network
2. Replace non-differentiable components by 

differentiable approximation for backward pass
• E.g., replace JPEG compression with the identify function

40

[Athalye et al.
ICML’18]



Attack technique 2: EoT
Expectation over Transformation
• For attacking defenses with randomness
• Original optimization: min

-
𝑓(𝑥)

• New optimization: min
-
𝐸.∼0 𝑓(𝑡(𝑥))

o 𝑡 ⋅ : some transformation function sampled from a 
distribution of transformations 𝑇

• ∇-𝐸.∼0 𝑓 𝑡 𝑥 = 𝐸.∼0 ∇-𝑓 𝑡 𝑥
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[Athalye et al.
ICML’18]



Attack technique 2: EoT
Very useful in physical attack

42

[Athalye et al.
ICML’18]

Optimize over different backgrounds, scales, rotations, lightings



Obfuscated Gradients
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[Athalye et al. ICML’18]

Adversarial Training 
with PGD

Cascade Adversarial 
Training



Adversarial Training
Standard training:

min
𝜽

'
(𝒙,&)∈)

ℓ(𝒙, 𝑦; 𝜽)

Adversarial training (a.k.a. robust optimization) :

min
𝜽

'
(𝒙,&)∈)

max
𝜹∈𝚫

ℓ(𝒙 + 𝜹, 𝑦; 𝜽)
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Hard min-max optimization problem 



Adversarial Training: Approximation

min
𝜽

'
(𝒙,&)∈)

max
𝜹∈𝚫

ℓ(𝒙 + 𝜹, 𝑦; 𝜽)
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Step 1 (inner maximization): 
𝜹∗ = argmax

𝜹∈𝚫
ℓ 𝒙 + 𝜹, 𝑦; 𝜽

Step 2 (outer minimization): 
min
𝜽
ℓ 𝒙 + 𝜹∗, 𝑦; 𝜽

Danskin’s Theorem: 
If ℓ is continuously differentiable w.r.t. 𝒙 and 𝜽,

and 𝜹∗ is the maximizer of the inner problem, then
this approximation is perfect



Adversarial Training
• Conditions of Danskin’s Theorem do not hold
o Loss function is not continuously differentiable, due to 

ReLU and max-pooling
o We only approximately find the best perturbation

• Empirically, this approach works quite well, if the 
perturbation is strong enough

46



Adversarial Training with FGSM
• Only effective against FGSM attack, but not against 

stronger attacks like PGD

• FGSM is too weak for solving the inner maximization

• It quickly converges to a model where FGSM can’t find 
adversarial examples successfully

• There is also the label leaking problem

47

[Goodfellow 
ICLR ‘14]



Adversarial Training as Regularization
• Adversarial training is a type of regularization

• Standard model utilizes all weakly-correlated pixels

• Adversarially trained model tend to use only highly-
correlated features [Tsipras et al. arXiv’18]
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Linear model trained on 
binary MNIST (5 vs 7)
[Tsipras et al. arXiv’18]



Adversarial training as L1-regularization
• Let model 𝑓 𝒙 = 𝒘 ⋅ 𝒙 and loss ℓ 𝒘, 𝒙, 𝑦 = −𝑦𝒘 ⋅ 𝒙
• Standard training:   min

2
−𝑦𝒘 ⋅ 𝒙 (ignore summation)

• Adversarial training (with FGSM perturbation): 
min
1
−𝑦𝒘 ⋅ (𝒙 + 𝜖 sign(𝛻𝒙ℓ(𝒘, 𝒙, 𝑦)))

= min
1
−𝑦𝒘 ⋅ (𝒙 + 𝜖 sign(−𝑦𝒘))

= min
1
−𝑦𝒘 ⋅ 𝒙 + 𝜖 −y𝐰 ⋅ sign(−𝑦𝒘)

= min
1
−𝑦𝒘 ⋅ 𝒙 + 𝜖 𝒘 $
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Adversarial training as L1-regularization
• The connection does not hold in non-linear cases

• Empirically, “input gradient regularization” still useful
o min

𝜽
∑(𝒙,4)∈6 ℓ(𝒙, 𝑦; 𝜽) + 𝜆 ⋅ ∇7ℓ 𝒙, 𝑦; 𝜽 $

o Also known as double backpropogation
o Known to increase generalization  [Drucker & LeCun ‘91]
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Adversarial Training with PGD
• PGD is strong in the sense that it consistently finds the 

perturbation that maximizes the loss of the model

• The authors conjecture that, if the adversary only uses 
gradients of the loss, it will not find significantly better 
local maxima than PGD

• In other words, PGD is the strongest first order attack

51

[Madry
ICLR ‘18]



Adversarial Training with PGD
• Start PGD from 103 uniformly random points around 
ℓ!-ball of the example, and run until the loss plateaus

52

[Madry
ICLR ‘18]

Loss



Adversarial Training with PGD
• Start PGD from 103 uniformly random points around 
ℓ!-ball of the example, and run until the loss plateaus

• Blue histogram: loss on standard network

• Red histogram: loss on adversarially-trained network
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[Madry
ICLR ‘18]



Adversarial Training with PGD
Besides a strong attack, model capacity also important
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[Madry
ICLR ‘18]



Adversarial Training with PGD
• Drawback: slow and not scalable

• Each iteration of PGD is computationally as expensive 
as the network update

• PGD typically uses ≥ 20 iterations

• At least 20 times slower than standard training!

55

[Madry
ICLR ‘18]



Adversarial Training with PGD
• The current state-of-the-art white-box defense

• Many subsequent works try to speed up the process, 
but most of them are not thoroughly tested yet, and 
some are already broken

56

[Madry
ICLR ‘18]



Faster Adversarial Training?
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• AT with FGSM and random initialization

• Cyclic learning rate & Mixed-precision arithmetic

[Wong et al.. ICLR ‘20]



Stronger Adversarial Training?
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[Wang et al.. ICLR ‘20]



How Do I Know If My Defense Is Good?
1. Define concrete “threat model”
o What does the attacker know?
o What power / constraints do the attacker have?
o What dataset is considered?

• Example: The attacker has white-box knowledge, and 
he can perturb each pixel up to 8 in [0, 255] scale. 
Claim: 85% accuracy on ImageNet
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How Do I Know If My Defense Is Good?
2. Write clear and precise description of your defense
o Make your code and model public
o Many researcher will help test your method
o The evaluation is usually more accurate when conducted by 

different people
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How Do I Know If My Defense Is Good?
3. Evaluation
o Design adaptive attacks targeting your model
o Check if there are obfuscated gradients

§ Black-box attack, plot distortion-vs-accuracy curve, …
o Try different hyperparameters, e.g., iterations, step size, …
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Next Time
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• Why do adversarial examples exist?

• Many theories, but no absolute answer yet


