
Chapter 1

Ramsey Theory

Pigeonhole Principle Given n pigeons in q pigeonholes, there has to be

� a pigeonhole with at least
⌈
n
q

⌉
pigeons, and

� a pigeonhole with at most
⌊
n
q

⌋
pigeons.1

Of course the Pigeonhole Principle (PP) just formulates simple general properties of any decent
�average�-concept: there should always be an instance that is at least the average and an instance
that is at most the average.

The more general form of the PP allows that the pigeonholes are labeled and that we designate
an individual �target� number of pigeons for each of them. Formally: General Pigeonhole
Principle Let n1, . . . , nq ∈ N be arbitrary positive integers and let P be a set which is partitioned
into q pairwise disjoint subsets P1, . . . , Pq, that is P = ∪i = 1qPi. If |P | ≥

∑q
i=1 ni − q + 1 then

there exists an index i ∈ [q] such that |Pi| ≥ ni.

For a formal proof, say of the �rst statement of the PP, one can note that the negation is simply

saying that all pigeonholes have strictly less than
⌈
n
q

⌉
, i.e. at most

⌈
n
q

⌉
− 1 pigeons. This leads

to a contradiction to all pigeons appearing in one of these q pigeonholes, as q ·
(⌈

n
q

⌉
− 1
)
< n.

In applications of the PP a set of objects/individuals/entities (pigeons) are classi�ed into cat-
egories (pigeonholes) according to some characteristic. The categories are exclusive, so no ob-
ject/person/entity (pigeon) can be put in two categories, but each of them belongs to one of
them.

In our treatment we will mostly think of the classi�cation into categories as a coloring of the base
set.

In the �rst part of our course we will take the Pigeonhole Principle to a whole new level while
studying both the quantitative and the qualitative aspects of Ramsey theory.

1Or saying the same more formally: if the elements of a set Q are classi�ed into q pairwise disjoint subsets (i.e.

Q is the disjoint union of the sets Qi, i = 1, . . . q), then there is a subset Qj with |Qj | ≥
⌈
|Q|
q

⌉
elements and there

is a subset Qℓ with |Qℓ| ≤
⌊
|Q|
q

⌋
elements.
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1.1 Ramsey's theorem for graphs

1.1.1 Two-colour Ramsey numbers for cliques

� Warm-up problem from sociology

� How many people can be at a party without three mutual friends or three mutual
strangers?

� Make a graph: vertices := people, red edge := friends, blue edge := strangers ⇒ how
large can a two-coloured complete graph without monochromatic triangles be?

� Answer, part 1: at least 5: red graph is C5

� Answer, part 2: at most 5:

* Suppose we have six vertices, and consider the edges incident to the �rst one

* wlog (at least) three of these are red (where 3 =
⌈
5
2

⌉
; PP is used with the 5 incident

edges (pigeons) classi�ed into 2 classes (pigeonholes) according to their color)

* if any two such endpoints share a red edge → red triangle, done

* therefore the endpoints of the three red edges span a blue triangle, done

De�nition 1.1.1 (Ramsey numbers). Given s ∈ N, let R(s) be the minimum n ∈ N such that
every red-blue colouring of the edges of Kn contains a subgraph isomorphic to Ks the edges of
which all have the same color (refered to as being monochromatic (or m.c., for short)).

� Observations

� We have just proved R(3) = 6

� Upper bound proof: �nding a monochromatic clique in an arbitrary colouring

� Lower bound proof: construction of a speci�c colouring without monochromatic
cliques

� Often convenient to only consider red subgraph: cliques ↔ red cliques, independent
sets ↔ blue cliques

� Finiteness of R(42) for example is totally unclear at this point

Theorem 1.1.2 (Ramsey [8], 1930). For every s ∈ N, R(s) is �nite.

� Philosophy: �every large system, no matter how chaotic, contains ordered subsystems"

� Quintessential Ramsey result � �nd monochromatic substructures in large coloured struc-
tures

� Ramsey: British logician, primarily interested in existence of R(s)

Claim 1.1.3. For every s ∈ N, R(s) ≤ 4s.

Proof. Let n = 22s, and �x an arbitrary red/blue edge-colouring c : E(Kn) → {red, blue} of Kn.
We will �nd a monochromatic Ks.

To this end we �rst will �nd a sequence of vertices v1, v2, . . . , v2s−2 ∈ V := V (Kn), which is
right-monochromatic, by which we mean that for any �xed index i = 1, 2, . . . , 2s − 3, the edges
going from vi to a vertex vj with a larger index j have the same color. In other words for any
i ∈ {1, 2, . . . , 2s − 3}, there exists a color c∗(i) ∈ {red, blue}, such that c(vivj) = c∗(i) for
every j, i < j ≤ 2s − 2. Once we �nd such a right monochromatic sequence, we will be done.
Indeed, the PP provides us with a subsequence vi1 , . . . , vis−1

of length
⌈
2s−3

2

⌉
= s− 1, such that
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c∗(i1) = · · · = c∗(is−1) and then the vertices vi1 , . . . , vis−1
, together with the last vertex v2s−2

form a monochromatic clique of order s (in color c∗(i1)).

So to complete the proof we just need to �nd this long enough right-monochromatic sequence.
We do this in a quite greedy fashion, using again the PP. We will keep picking the next vertex
arbitrarily from the set of vertices still under consideration, then deleting all neighbours whose
edges are coloured with the less frequently appearing colour, and note that we have at least half
of the vertices remaining. Formally, let us set S0 := V and for every i ∈ {0, 1, . . . , 2s− 3} do the
following. Given a set Si of size 22s−i, we select an arbitrary vertex in Si, name it vi+1, and let
Bi+1 and Ri+1 denote the sets of those neighbors of vi+1 in Si which are connected to it via a
blue and a red edge, respectively. Then obviously |Bi+1|+ |Ri+1| = |Si| − 1. We choose Si+1 to
be the larger of Bi+1 and Ri+1, so for its size we have

|Si+1| ≥
⌈
|Bi|+ |Ri|

2

⌉
=

⌈
22s−i − 1

2

⌉
= 22s−(i+1),

as desired. To complete the proof we just need to check that this process can go on long enough,
i.e. v2s−2 can actually be selected. For that we need S2s−3 to be non-empty, which is the case
since |S2s−3| = 22s−(2s−3) = 8. (So in fact in the theorem we could have claimed the upper bound
4s/8 instead.)

Even though this upper bound is getting close to being a century old, the order 4s is still essentially
the best known. We will return to the question of how good these bounds are when we discuss
lower bounds in the next section; for now we see a couple of generalisations.

Hungarian mathematicians Paul Erd®s and George Szekeres came across the problem indepen-
dently (see their motivation two sections later), and obtained slightly better quantitative bounds.
For the improvement one can observe that the proof above was quite �wasteful� in the sense that
we always followed greedily the immediately best option, towards the larger monochromatic de-
gree, and then we completely ignored the fact that once we did that in some color, in that color it
is enough to �nd a clique of one smaller order. This makes the problem asymmetric after the �rst
step of the proof, because in the other color we still need to �nd a clique of same order as before.
To accommodate this asymmetry, the following de�nition is necessary.

De�nition 1.1.4 ((not necessarily symmetric) Ramsey numbers). Given s, t ∈ N, let R(s, t) be
the minimum n ∈ N such that every red-blue colouring of the edges of Kn contains either a red Ks

or a blue Kt.

� Observations

� Swapping red/blue: ⇒ R(s, t) = R(t, s)

� R(s, 1) = 1, R(s, 2) = s.

The following upper bound of Erd®s and Szekeres will be proved on the homework as a guided
exercise.

Theorem 1.1.5 (Erd®s�Szekeres [4], 1935). For every s, t ∈ N, R(s, t) ≤
(
s+t−2
s−1

)
. In particular,

R(s) = O

(
4s√
s

)
.

1.1.2 Generalization 1: Ramsey's theorem for in�nite graphs

� What happens if we colour the edges of an in�nite graph, instead of a large �nite graph?

� In�nite graphs

� Vertex set N, Edge set
(N
2

)
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� Colour every edge red or blue

� Finite monochromatic cliques

� In particular, for any t ∈ N by considering the restriction of the colouring to the edges
between the �rst R(t, t) numbers, we are guaranteed to �nd a monochromatic clique of
size t.

� Thus we de�nitely have arbitrarily large monochromatic cliques

� In�nite monochromatic cliques

� This is NOT the same as an in�nite monochromatic clique

* These large �nite cliques can be bounded and far apart

� Question: Do we get an in�nite monochromatic clique?

Theorem 1.1.6 (Ramsey [8], 1930). For any two-colouring of
(N
2

)
, there exists an in�nite set

S ⊂ N for which
(
S
2

)
is monochromatic.

Proof. One can repeat the vertex selection procedure in the proof of Claim 1.1.3 in�nitely often
and hence create an in�nite right-monochromatic sequence. The proof of this is identical to the
one there with the obvious adaptation that Si = Bi+1 ∪ Ri+1 being in�nite implies Si+1 being
in�nite. And the in�nite right-monochromatic sequence gives rise to an in�nite monochromatic
clique (as at least one of the colors must occur in�nitely many times among the c∗-values).

Homework: in�nite Ramsey Theorem ⇒ �nite Ramsey Theorem

1.1.3 Generalization 2: Multicolour Ramsey numbers

In many applications the relation between people (or other entities) are not necessarily binary.
After all, there must be more to human (or other) relations than love and hate. For this reason
the following de�nition arises quite naturally.

De�nition 1.1.7 (Multicolour Ramsey numbers). Given integers r ≥ 2 and t1, t2, . . . , tr ∈ N,
let Rr(t1, t2, . . . , tr) be the minimum n ∈ N such that for any colouring of the edges of Kn with
colours from [r], there is some index i for which there is a monochromatic Kti of colour i.

Formally, by an r-coloring of the edges we mean a function c : E(Kn) → [r]. Note that we had
to forget our nice habit of using actual colors in our coloring and retreat to the (probably more
boring and de�nitely less colorful) realm of naming our colors by integers. This is purely for
practical purposes, as statements about more than two colors become quite cumbersome to write
down when using not only red and blue, but also yellow, green, orange, purple, etc ... You get
the picture(!)

Theorem 1.1.8. For any r ≥ 2 and t1, t2, . . . , tr ∈ N, Rr(t1, t2, . . . , tr) is �nite.

Proof. Proof by induction on r, the number of colours. Base case, r = 2, is Theorem 1.1.2.

For the induction step, suppose r ≥ 3, and we have numbers t1, t2, . . . , tr. We will take a large
enough n, the formula given later in the proof, and �x an arbitrary r-colouring c of the edges of
Kn.

The idea is to go �colorblind�, combine the last two colors together and use the �niteness of the
Ramsey numbers for r−1 colors. Of course this will guarantee what we want only in the �rst r−2
colours. In order to have what we want in the last two colors as well, we will ask our (r− 1)-color
Ramsey number to deliver a large enough clique in the last colour, so we can use that to take both
of the colorblinded orginal colors.
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Let us now formalize this idea. We de�ne coloring c∗ : E(Kn) → [r−1] from c. Let c∗(xy) = r−1 if
c(xy) = r and c∗(xy) = c(xy) otherwise. By the induction hypothesis, Rr−1(t1, t2, . . . , tr−2, R(tr−1, tr))
is �nite, and we choose n = Rr−1(t1, t2, . . . , tr−2, R(tr−1, tr)). Note that here we use that we use
that we already can assume the �niteness of the Ramsey number for any large value of clique
orders if the number of colors is only r− 1. Now the de�nition of the Ramsey number provides us
an appropriate monochromatic clique in one of the r− 1 colors. If this monochromatic clique is in
one of the �rst r− 2 colours, then we are done, as we then have a monochromatic clique of size ti
in colour i, 1 ≤ i ≤ r − 2. Otherwise we have a clique of size R(tr−1, tr) that uses the combined
colour. We now restore the original colouring, so that all of these edges are coloured either r − 1
or r. By de�nition of R(tr−1, tr), we also �nd the desired monochromatic clique in this case.

Remarks.

� What kind of upper bound does this give?

� Following the argument in the proof, we get

Rr(t1, t2, . . . , tr) ≤ R(t1, R(t2, R(t3, . . . R(tr−1, tr) . . .))),

� Applying Theorem 1.1.5 and the simpli�cation that
(
s+t−2
s−1

)
< 2s+t, this shows that we

have

Rr(t1, t2, . . . , tr) ≤ 2t1+2t2+2
. .

.
2
tr−1+tr

� In particular, Rr(t, t, . . . , t) ≤ 22
. .

.
22t+1

(tower of height r)

� Can we do better?

� By splitting colours evenly and merging them simultaneously in the above argument,
one can reduce the upper bound to a tower of height log r.

� In the homework you are asked to give an upper bound of the form r
∑

i ti (which is
much better!).

1.2 Lower bounds for Ramsey's theorem

Recall that to lower bound R(s, t) one needs to provide a colouring of a large complete
graph without a red monochromatic Ks and a blue monochromatic Kt.
For example for R(3, 3) we were �lucky� to have the C5-construction that complements our upper
bound of 6 perfectly and hence proves that R(3, 3) = 6. The value of R(4, 4) is known (it is 18)
mainly because we are again lucky enough to have an incredibly nice coloring on 17 vertices which
does the deed. Starting from s ≥ 5 however, it is unclear how to generalize this construction the
�right way�. Or rather, the obvious generalization does not anymore match the upper bounds we
have available from our various PP-based arguments. For R(5, 5) all what is known is that

43 ≤ R(5, 5) ≤ 48.

The upper bound was improved from 49 to 48 just recently (in 2017), with heavy use of computer

checking. It is worthwhile to think over what such a proof must deal with. There are 2(
48
2 ) > 10338

red/blue-colourings of the complete graph on 48 vertices. The program must consider all of them
and verify that they all contain a monochromatic K5. Now, there are about 10

80 particles in the
(observable) universe and the age of the universe is thought of being about 1026 nanoseconds.
So every single particle in the universe has to check at least 10232 of these cases in every single
nanosecond of its existence and then they have a chance to be �nished by now ... This indicates
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the enormous numbers involved in this simple combinatorial problem and maybe explains our
futility in solving it. And it also indicates that the recent veri�cation must do something clever
besides pure brute-force checking.

1.2.1 A �rst idea: Dense Ks-free graphs

The �rst idea one might have for a construction is to be greedy. This sometimes works, greedy
algorithms are often e�ective in computer science. Here one could argue with the following heuris-
tic.
Heuristic. We need two Ks-free graphs complementing each other, that is together they should
occupy all the

(
n
2

)
edges of Kn. Let us �rst focus on the red graph and make sure that it uses up

as many of these edges as possible, and deal with the blue graph later.

This approach leads us to a natural extremal graph theory problem, asking for the maximum
number of edges a Ks-free graph on n vertices can have. Let us �rst see what happens when
s = 3, that is, in the case of triangle-free graphs. After some trial and error with examples of
triangle-free graphs on a small number of vertices, one convinces oneself that the complete bipartite
graph K⌈n

2 ⌉,⌊n
2 ⌋ seems to be a triangle-free graph with many edges. The result that indeed one

cannot do better, i.e. that every graph with

e
(
K⌈n

2 ⌉,⌊n
2 ⌋
)
+ 1 =

⌈n
2

⌉
·
⌊n
2

⌋
+ 1

edges does have a triangle, is one of the �rst theorems of Extremal Graph Theory.

Theorem 1.2.1 (Mantel, 1907). If G is K3-free then e(G) ≤ e
(
K⌈n

2 ⌉,⌊n
2 ⌋
)
.

Proof. Consider a vertex w of maximum degree in a triangle-free graph G, i.e. let d(w) = ∆(G) =:
∆. Recall that N(w) is the neighborhood of w, and let us denote by R(w) = V (G) \ N(w) the
rest. We bound from above the number of edges of G by adding up all the degrees of vertices in
R(w). Indeed, by adding up the degrees of vertices in R(w) we account for each edge of G at least
once, since G is triangle-free, hence N(w) contains no edge. Consequently,

e(G) ≤
∑

v∈R(w)

d(v) ≤
∑

v∈R(w)

∆ = |R(w)| ·∆ = (n−∆)∆ ≤
(
n−

⌊n
2

⌋)
·
⌊n
2

⌋
= e

(
K⌈n

2 ⌉,⌊n
2 ⌋
)
,

as required. Here we used that |R(w)| = n− |N(w)| = n−∆, and then maximized the quadratic
function x 7→ (n− x)x over the integers.

Remark. When adding up the degrees in R(w) we accounted for each edge between R(w) and
N(w) exactly once, and for each inside R(w) exactly twice. The reason we did not worry so much
because of this overcount is our �rm belief in our construction being optimal. In the complete
bipartite graph there are no edges inside R(w), so if it is indeed optimal we do not lose anything
by this estimation.

The construction of complete bipartite graphs easily generalizes when instead of K3 we want to
forbid Ks+1. Then we can take a graph with a vertex set partitioned into s parts inlcude all edges
between parts and no edges inside the parts. These graphs are called complete s-partite graphs and
can be parametrized by the sizes of its parts t1, . . . , ts. Complete s-partite graphs do not contain
Ks+1, since two of the s+1 vertices of any copy of a Ks+1 would have to be in the same part (by
the PP), but vertices in the same part are not adjacent, contradiction. Among complete s-partite
graphs the most edges are contained in the one where the parts are as equal as possible, so any two
parts have sizes di�ering by at most one. Indeed, otherwise we can move a vertex from a bigger
part to smaller part and increase the number of edges. This graph is called the Turán-graph and
is denoted by Tn,s.
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Turán has shown in 1941 (and we will shown in a couple of weeks) that the Turán graph Tn,s is
indeed the Ks+1-free graph with the most number of edges on n vertices.

Let us now return to our original problem of constructing an appropriate 2-coloring. As the red

graph, we decided to take the Ks-free Turán graph Tn,s−1 which uses up the most edges from Kn.
What is then the blue graph? It is the disjoint union of s − 1 cliques of order roughly n

s−1 . In
order to ensure that the blue graph also has no Ks, we better make sure that n

s−1 < s, that is

n ≤ (s − 1)2. In other words, with this method we can constructed Ramsey graphs on (s − 1)2

vertices, but no more. Hence

R(s, s) ≥ (s− 1)2 + 1,

pretty pathetic when compared to the best known upper bound, which stands close to 4s.

1.2.2 The right idea: random construction

The coloring of the previous subsection is pretty simple, yet it is surprisingly hard to improve.
For a short period of time Turán himself believed his construction to be optimal. Erd®s massively
destroyed this belief in 1947 via an equally simple, but fundamentally di�erent idea.

Heuristic. We want the same from the red and the blue graph (they should be Ks-free). Their
roles are symmetric. Each edge has as much reason to be red than to be blue. Let us choose the
color of each edge uniformly at random, independently from each other.

Theorem 1.2.2 (Erd®s, 1947). R(t, t) ≥ (1− o(1)) t
e
√
2
2

t
2 .

Proof. The idea of this proof is to prove the existence of a large Ramsey colouring without actually
presenting it. Colour each edge of Kn by red or blue with probability 1/2, such that these random
choices are mutually independent of each other. In other words, our probability space consists of
the set of all red/blue-colourings of E(Kn) with all colorings being equally likely.

We want to avoid a monochromatic Kt. So for each R ∈
(
[n]
t

)
, i.e. each set R of t vertices, we

de�ne ER be the event that the induced subgraph of Kn on R is monochromatic. The probability

that ER happens is: P(ER) = 2( 12 )
(t2) and we have

(
n
t

)
such events. The probability that there

exists a monochromatic Kt can then be estimated by the union bound

P

 ⋃
R∈([n]

t )
Kt

 ≤
∑

R∈([n]
t )

P (RK) =
(
n
t

)
· 2 ·

(
1
2

)(t2) ≤ 2
(
en
t

)t ( 1
2

)(t2) .
If this expression is less than 1, then there exists a red/blue-coloring of E(Kn) without a
monochromatic Kt. Taking the tth root and rearranging we obtain that if n < t

2
1
t ·

√
2e
2

t
2 , then P(

there is a m.c. Kt) < 1. Therefore, there exists a red/blue-colouring without a monochromatic
Kt on

n =

⌊
t

2
1
t ·

√
2e

2
t
2

⌋
vertices. It exists not with positive probability, or 99% probability, but with absolute, 100%
certainty, SURELY THERE IS ONE. And hence, R(t, t) ≥ (1− o(1)) t

e·
√
2
2

t
2 , as claimed.

Let us remark that this proof in fact shows that almost every colouring of a Kn is a good colouring
to avoid cliques of order two more. However, we cannot explicitly �nd one. (see the Constructive
Combinatorics course next semester.)
Recall where we stand:

2
t
2 ≤ R(t, t) ≤ 4t.
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So both bounds are exponential now, but they are still very far apart. A relatively recent improve-
ment (about a decade old) by a factor which is superpolynomial (if ever so slightly) is considered a
great breakthrough and appeared in the Annals of Mathematics. But there are no improvements
to the bases. In particular, it would be a fantastic advance to prove that R(t, t) < 3.9999t holds.

In the above proof the use of probability is not essential, one could simply count bad colorings
among all colorings and conclude that there must be a good one left even after taking out all
the bad ones. Ultimately this is true about every statement in discrete probability. However, the
idea of introducing randomness is a major paradigm shift. It directs our attention to the various
tools of probability theory, some of which would really be problematic to say, not to mention �nd,
through just counting. The improvement of the next section is a initial step in this direction.

1.2.3 A twist on the method: improving the constant factor

It is worthwhile to note that one can prove2 that with probability tending to 1, the random coloring
will contain monochromatic cliques of order t, so in a way the crude analysis through the union
bound is essentially best possible.

Using some alterations to the random construction however, we can improve the Erd®s lower
bound by a constant factor

√
2. By the above, in this regime it is simply not anymore true that

the random coloring is a good one, still there is a good one.

Theorem 1.2.3. R(t, t) ≥ (1− o(1)) te2
t
2 .

Proof. Like in the previous theorem, let us colour the edges of Kn uniformly at random by either
red or blue with probability 1

2 . As we mentioned before this proof, if we raise n above what we
have worked with in Theorem 1.2.2, it is inevitable that with overwhelming probability there will
be (many) monochromatic Kt. Our plan is to destroy each of these by deleting a vertex from them
and hope that the remaining two-colored clique, now without any monochromatic Kt, has retained
most of the original vertices. In other words, we need to show that the number of monochromatic
Kt is of smaller order than the number of vertices.

To this end, let X be the random variable that equals the number of monochromatic Kt's in this
two-colouring. To have an idea about this seemingly complicated random variable, we express
it as the sum of many simple ones and apply a simple yet surpringly powerful general property
of expectation of variables: its linearity. For each t-element set K, let XK denote the indicator
random variable of the event that K induces a monochromatic Kt. Then X =

∑
K∈([n]

t )
XK and by

the linearity of expectation

E[X] =
∑

K∈([n]
t )

E[Xk] =
∑

K∈([n]
t )

P(XK) =
(
n
t

)
· 2 ·

(
1
2

)(t2).
Therefore, there exists a colouring c such that the number of monochromatic Kt's is at most(
n
t

)
· 2 ·

(
1
2

)(t2). Fix such a colouring and delete one vertex from each monochromatic Kt. This

gives us a red/blue-coloring on at least n −
(
n
t

)
· 2 ·

(
1
2

)(t2) vertices without any monochromatic
Kt. Hence

R(k, k) > n−
(
n

t

)
· 2 ·

(
1

2

)(t2)
≥ n−

(ne
t

· 2−
t−1
2 + 1

t

)t
(1.1)

2We do not do it here. One must use the second moment method



1.3. HYPERGRAPH RAMSEY THEORY 11

where we estimated
(
n
t

)
≤
(
ne
t

)t
. Substituting n =

√
2
t · t

e , we obtain a red/blue-coloring on

√
2
t
· t
e
−
(
2

1
2+

1
t

)t
=

√
2
t
· t
e
(1− o(1))

vertices.3 This shows the promised lower bound on R(t, t).

1.3 Hypergraph Ramsey theory

1.3.1 A motivation: the Happy Ending Problem

Our present problem has been suggested by Miss Esther Klein in connection with
the following proposition.

From 5 points of the plane of which no three lie on the same straight line it is
always possible to select 4 points determining a convex quadrilateral.

We present E. Klein's proof here because later on we are going to make use of it.
If the least convex polygon which encloses the points is a quadrilateral or a pentagon
the theorem is trivial. Let therefore the enclosing polygon be a triangle ABC. Then
the two remaining points D and E are inside ABC. Two of the given points (say A
and C) must lie on the same side of the connecting straight line DE. Then it is clear
that AEDC is a convex quadrilateral.

Miss Klein suggested the following more general problem. Can we �nd for a given
n a number N such that from any set containing at least N points it is possible to
select n points forming a convex polygon?

There are two particular questions: (1) does the number N corresponding to n
exist? (2) If so, how is the least N(n) detremined as a function of n?

The text above is from the introduction of a paper of Paul Erd®s and George Szekeres from 1935.
We put it here in original quote, because in retrospect this paper turned out be pioneering in two
di�erent, and at the time completely new �elds: combinatorial geometry and Ramsey theory.

Two years before, in 1933, the three main protagonists, along with a group of other young math-
ematically inclined, like Turán (whose name we will also hear a lot this semester), were meeting
regularly after university in the main park of Budapest and taking long walks in the wood to
discuss, what else, mathematics. Apparently, already then, this is what the cool kids were doing
in their free time.

It was at one of these meetings when Esther confronted the boys with her proof for a convex
quadrangle and the general question. Paul and George immediately jumped on the topic with
great enthusiasm, they got really excited by what they felt was a completely new type of geometric
problem. They gave constructions of point sets of size 2t−2 in general position, without containing
a convex t-gon. They also answered (1) in two di�erent ways and in the process they rediscovered
Ramsey's Theorem independently.

To motivate how the connection might have come about let us �rst make a few things precise from
the introduction. First of all we will be dealing with point sets P that are in general position, i.e.,
no three points of P are on the same line. With forsight we will denote by HE(t) (and not N(t))
the minimum integer n such that any n points in the plane in general position contain t points
spanning a convex t-gon.

All four-element point sets in general position in the plane are exactly one of two kinds: either
they form a convex 4-gon or not, depending on whether their convex hull is a quadrilateral or

3To optimize the choice of n (in terms of t) might be di�cult to do precisely, because of the binomial coe�cient
involved in the expression. It is easy to see however (and it is worthwhile to actually do!), that substituting a

constant factor larger n, say n =
√
2
t · t

e−ε
, would make the expression on the right hand side of (1.1) negative.

So we are at the asymptotical optimum.
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a triangle. The �rst easy, but important, observation is that the convexity of a t-element set in
general position could be characterized through the convexity of its four-element subsets.

Proposition 1.3.1. A t-element subset in general position forms a convex t-gon if and only if all(
t
4

)
of its four-subsets form a convex 4-gon.

Proof. If P ⊆ R2 forms a convex t-gon, then no point is the convex combination of the other n−1.
In particular no point is the convex combination any other three points, so every four-subset is
convex.

In the other direction, suppose that every four-subset of P is a convex 4-gon. If a point p ∈ P
would be a convex combination of the others, then it is also a convex combination of just three of
them: the vertices of the triangle which contains it, from an arbitrary triangulation of the convex
hull of P . This provides non-convex four-subset of P , a contradiction.

The second important observation is the proposition of Klein, which says that it is impossible that
for some �ve-element set none of the

(
5
4

)
four-element subsets are convex.

Proposition 1.3.2. It cannot happen that for some 5-element point set in general position none
of the four-element subset forms a convex 4-gon.

The natural classi�cation of four-element point sets and the relation of these classes to larger point
sets lead Erd®s and Szekeres to the idea to color the four-element subsets of n points in general
position by red or blue given whether they are in convex position or not, respectively. Then
Proposition 1.3.1 translates to a t-element subset being in convex position if and only if all its(
t
4

)
four-element subset are red. Klein's proposition on the other hand forbids the presence of a

�ve-element set with all its four-subsets being blue.

So, let's do some wishful thinking. If we were to know that there exists an integer, however large,
but �nite, denoted mysteriously by R(4)(t, 5), such that for any red/blue-coloring c :

(
[R]
4

)
→

{red, blue} of the 4-element subsets of the R(4)(t, 5) =: R-element set [R], there exists a t-element
subset T ⊆ [R] with all its 4-subsets red or a 5-element subset T ⊆ [R] with all its 4-subsets blue,
so if we know all this, then we would be done! Because then, we claim, HE(t) ≤ R(4)(t, 5), so
HE(t) was also �nite. Indeed, should such miraculous R := R(4)(t, 5) existed for some t, then
taking an arbitrary set P ⊆ R2 of R points in general position and creating the coloring described
above, this coloring cannot contain a 5-subset with all its four-subsets having color blue! But
then, by the magic property of the number R, there must be a t-subset T ⊆ [R] for which every
4-subset is red. And that, via Proposition 1.3.1, implies that T is in convex position!

All we need is the existence of such a magic number R(4)(t, 5). This motivated Erd®s and Szekeres,4

and motivates us as well, to introduce a Ramsey number for colorings, where instead of edges (i.e.
2-element subsets), we color k-element subsets.

1.3.2 The hypergraph Ramsey theorem

What is a hypergraph? It is a generalization of the concept of graphs, where instead of just
2-element vertex sets, as edges, we consider arbitrary subsets of a vertex set V . Formally, a
hypergraph is de�ned as a pair (V,F) of a vertex set V and edge set F , where F ⊆ 2V . Often, if it
is not ambiguous, we omit referring to the vertex set and identify the hypergraph with its edge set
F . A hypergraph is called k-uniform, for some positive integer k, if all its edges have size k, that

4There might also have been other motivating factors ... But this is just speculation .... Anyway, Esther Klein
and George Szekeres were married a couple of years after the initiation of the problem by the former and its
extension (together with Erd®s) by the later. This prompted Paul Erd®s to coin the term Happy End Problem.
Klein and Szekeres escaped persecution of Jews in Hungary before the second world war and settled in Australia
afterwards. They died within an hour of each other at the age of 95 and 94, respectively. A good example of how
far an innocent-looking math problem might lead you ...
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is if F ⊆
(
V
k

)
. A k-uniform hypergraph is sometimes called a k-graph. The edges of a hypergraph

are sometimes called hyperedges, and the edges of a k-graph are sometimes called k-edges.

Examples.

(1) For k = 2, we get back our good old graph concept: a 2-graph is just a graph.

(2) The analogue of complete graphs: the complete k-graph on t vertices contains all k-subsets of

the t-element vertex set [t] and is denoted by K
(k)
t . In other words, K

(k)
t =

(
[t],
(
[t]
k

))
.

(3) There are various analogues of many graph theoretic concepts, like path and cycles: tight
paths/cycles, loose paths/cycles, ℓ-tight paths/cycles, Berge-cycles, etc ...

(4) Projective planes: V = points := 1-dimensional subspaces of K3, F = lines := 2-dimensional
subspace of K3, where K is an arbitrary �eld. When K is the �nite �eld Fq, we get a (q+1)-
uniform hypergraph with q2 + q + 1 vertices and equally many hyperedges. E.g. the Fano
plane is a 3-uniform hypergraph on 7 vertices with 7 edges obtained from the projective plane
de�ned over F2.

Figure 1.1: The Fano plane

For the rest of this section we will only be concerned with the complete k-uniform hypergraph.
We will de�ne hypergraph Ramsey number as the straightforward generalization of graph Ramsey
numbers.

De�nition 1.3.3 (Hypergraph Ramsey Number). Given k ∈ N, and s, t ≥ k, R(k)(s, t) is the

minimum n ∈ N such that for every coloring c :
(
[n]
k

)
→ red/blue there exists a set T ∈

(
[n]
t

)
such

that c(S) = red for every S ∈
(
T
k

)
or there exists a set T ∈

(
[n]
s

)
such that c(S) = blue for every

S ∈
(
T
k

)
.

Sometimes we refer to the property of the subset T in the de�nition that T hosts a red K
(k)
s or

that it hosts a blue K
(k)
t . We call a hypergraph with all its edges colored with the same color

monochromatic.

Before going on on, let us make some simple observations:

(1) R(2)(s, t) = R(s, t).

(2) R(1)(s, t) = s+ t− 1 (think over the detailed proof!)

(3) R(k)(s, t) = R(k)(t, s).

(4) R(k)(k, t) = t.

Analogous to the graph case, the �rst question we should ask ourselves is whether R(k)(s, t) is
�nite.

Theorem 1.3.4. For arbitrary positive integers k, and t, s ≥ k, the value R(k)(s, t) is �nite.
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Remark. In the homework exercise you will be asked to de�ne hypergraph Ramsey numbers for
more than two colors and prove their �niteness. Moreover, the theorem also extends to the in�nite
setting analogously to the in�nite Ramsey theorem for graphs.

First proof. We will follow the idea of the proof of Claim 1.1.3 and build a sequence where the
color of every edge depends only on its smallest vertex in the sequence, and this way one can
naturally identify a color with each vertex of the sequence. Then the 1-uniform Ramsey theorem
will be used to select a subsequence where all these colors are the same, hence providing us with
the monochromatic clique we want.

A sequence v1, . . . , vℓ ∈ U of vertices will be called right-neighborhood-monochromatic in the set
U , if the color of a k-set contained in U depends only on its element from the sequence with the
smallest index (provided such an element exists). Formally, a sequence v1, . . . , vℓ ∈ U is called
right-neighborhood-monochromatic in U if there exists a coloring c∗ : [ℓ] → {red, blue} such that
for every k-set T ∈

(
U
k

)
with T ∩ {v1, . . . , vℓ} ≠ ∅, we have c(T ) = c∗(vminT ), where we adopted

the notation minT = min{j : vj ∈ T}.

Similarly to Claim 1.1.3, our goal is to build a long enough right-neighborhood-monochromatic
sequence v1, . . . , vℓ in some set Vℓ of large enough size. For us the length ℓ = t + s − 2k + 1
will su�ce with |Vt+s−2k+1| = t + s − k. Indeed, if we succeed to build such a sequence, then
the 1-uniform Ramsey theorem will provide us with a subsequence of length t − k + 1 which is
c∗-monochromatic in red or a subsequence of length s−k+1 which is c∗-monochromatic in blue.
Such a sequence unioned with the remaining k − 1 vertices in Vt+s−2k+1 \ {v1, . . . , vt+s−2k+1}
forms a c-monochromatic subset T of the size required for its color. It is easy to check that a
set T obtained this way is always monochromatic. For this just note that every k-subset S ⊆ T
does contain at least one element of the sequence (since the rest has only k − 1 elements). Then
the c-color of this S is the c∗-value of the minimum sequence-index appearing in S. But all these
colors are the same by the way we selcted the elements of T from the sequence.

Let us see now how can we build recursively a right-neighborhood sequence v1, . . . , vi in some set
Vi and the appropriate coloring c∗ : [i] → {red, blue}.

For v1 we choose an arbitrary vertex in V0 := [n]. To �nd V1, we consider the coloring of the
complete (k− 1)-uniform hypergraph on V0 \ {v1} induced by the c-colors of the k-sets containing

v. Formally, let c̃(Q) := c(Q∪{v1}) for every Q ∈
(
V0\{v1}

k−1

)
. The (k−1)-uniform Ramsey theorem

(true by induction) will provide us with a (large) c̃-monochromatic subset N1 of size n1 and we
put V1 = N1 ∪ {v1}. Then v1 is right-neighborhood-monochromatic in V1 by the de�nition of N1,
because we can simply de�ne c∗(1) to be the c̃-color of the (k − 1)-subsets of N1.

Given a sequence v1, . . . , vi that is right-neighborhood-monochromatic in some Vi with an appropri-
ate function c∗ : [i] → {red, blue} we choose vi+1 arbitrarily from Ni := Vi \ {v1, . . . , vi}. We �nd

Vi+1 by considering the coloring c̃, de�ned by c̃(Q) := c(Q∪{vi+1}) for every Q ∈
(
Ni\{vi+1}

k−1

)
, and

(hoping to) use the (k−1)-uniform Ramsey theorem to provide us with a (large) c̃-monochromatic
subset Ni+1 of size ni+1. Then we put Vi+1 = Ni+1 ∪ {v1, . . . , vi+1}. The vertex vi+1 is right-
neighborhood-monochromatic in Ni+1∪{vi+1} because Ni+1 is c̃-monochromatic and consequently
the whole sequence v1, . . . vi+1 is right-neighborhood-monochromatic in Vi+1. Indeed, we can sim-
ply extend the already existing c∗ : [i] → {red, blue} to i+1 by de�ning c∗(i+1) to be the c̃-color
of the (k − 1)-subsets of Ni+1.

Now the only thing left to do is to make sure that we are able to build a long enough sequence and
have the last set Vt+s−2k+1 of size at least k−1. We secure this by choosing the sizes ni large enough
with respect to ni+1. We set nt+s−2k+1 = k− 1. To make sure that there is a monochromatic set
Ni+1 of size ni+1 in an arbitrary red/blue-coloring of the (k − 1)-subsets of a set of size ni we
recursively choose ni = 1+R(k−1)(ni+1, ni+1) for every i = s+ t− 2k, . . . , 2, 1, 0. We can do this
because by induction all these (k−1)-uniform Ramsey numbers are �nite. Consequently we succed
in creating the appropriate right-neighborhood-monochromatic sequence, provided n ≥ n0+1.
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A (very-very) slight improvement of these bounds can be given by induction, where we do not
�forget� what color are the right-edges of the newly found element of the sequence. It is also
possible to extend the theorem to arbitrary (�nite) number of colors.

Homework.

1. Prove the recursion R(k)(t, s) ≤ R(k−1)(R(k)(t − 1, s), R(k)(t, s − 1)) and conclude Theo-
rem 1.3.4.

2. De�ne the r-color Ramsey-number R
(k)
r (t1, . . . , tr) and prove that it is �nite.

An immediate question after verifying any kind of �niteness should be �How large is �nite?� Let
us see. Using the recursion ni = R(k−1)(ni+1, ni+1) + 1 =: R(k−1)(ni+1) + 1 and the �nal value
ns+t−2k+1 = k − 1, we obtain

n0 = R(k−1)(R(k−1)(...(R(k−1)(k − 1) + 1)...) + 1) + 1,

where the function R(k−1) appears s+ t− 2k + 1 times.
For k = 2 this resolves to R(2)(s, t) ≤ R(1)(R(1)(...(R(1)(1) + 1)...) + 1) + 1 = 2s+t−3, indicating
that the above proof is indeed the generalization of the argument in the proof of Claim 1.1.3.

For k = 3 we obtain

R(3)(s, t) ≤ R(2)(R(2)(...(R(2)(2) + 1)...) + 1) + 1 ≤ 22·R
(2)(...(R(2)(2)+1)...)+1)−1

≤ 22
2·R(2)(...(R(2)(2)+1)...))−1 ≤ · · · ≤ 22

2.
..
2

,

a tower of height t+ s− 3.

For uniformity k = 4 things get completely out of hand: we have t + s − 3 3-uniform Ramsey
functions, each being a tower function, embedded inside one another ... To see a concrete example,
let us note that the bound we get for R(4)(5, 5), which is our upper bound on the Happy-Ending
number HE(5) = 9, is a tower of 29 twos. For an upper bound on 17 = HE(6) ≤ R(4)(6, 5) we
have to take a tower of 2s of the height, which is a tower of 2s of height 29. This might question
your intuitive understanding of the word �nite...

Before proving the theorem again, let us analyse the proof given above and try to see why the bound
became so incredibly large. We built our �right-monochromatic� sequence v1, v2, ..., vs+t−2k+1 to
this particular length so at the end we could use the 1-uniform Ramsey numbers for the sequence.
For each new element of the sequence we had to apply the (k− 1)-uniform Ramsey numbers. Our
upper bound on the (k − 1)-uniform Ramsey numbers are very large, their repeated application
forces them to be embedded inside the arguments of the previous one and this causes the bound
to become very-very-very-· · · -very large.

In contrast to this, the 1-uniform Ramsey bound, which we used only once at the end is rather
small: only the sum of the two arguments (minus one. In fact this is not only a bound, but the
exact value.) Erd®s and Rado turned the proof idea on its head and tried to use the 1-uniform
Ramsey numbers many times, but in exchange reduce the use of (k − 1)-Ramsey numbers. They
decided to build a much longer sequence by using the 1-dimensional Ramsey numbers in each
round, so they have to use the (k − 1)-uniform Ramsey numbers only once, at the end, for the
sequence. This reduces the bound to a function we can actually write down. This function will
still be large, but is relatively �close� to the truth.

Second proof of Theorem 1.3.4. Again we will apply induction on the uniformity k. The base case
k = 1 was proved already.

Let n ∈ N be chosen large enough with respect to k, t, and s and let us be given an arbitrary two-
coloring c :

(
[n]
k

)
→ {red, blue} of the k-subsets of [n]. Our goal is to �nd either a monochromatic
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t-element subset T ⊆ [n] in red (i.e. c(Q) = red for every Q ∈
(
T
k

)
) or a monochromatic s-element

subset T ⊆ [n] in blue (i.e. c(Q) = blue for every Q ∈
(
T
k

)
).

Our goal is to build a sequence v1, . . . , vℓ of vertices that is right-(k−1)-neighborhood-monochromatic.
By this we mean that the color of a k-set contained in {v1, . . . , vℓ} should only depend on its k−1

smallest indices. Formally, by this we mean that there exists a coloring c∗ :
(
[ℓ−1]
k−1

)
→ {red, blue}

such that for every k-subset T ⊆ {v1, . . . , vℓ}, we have c(T ) = c∗(Tmin(k − 1)), where we adopted

the notation Tmin(k − 1) ∈
(
[ℓ−1]
k−1

)
for the set of the k − 1 smallest indices j of vertices vj ∈ T .

How long a sequence should we build? We observe that if we manage to build a right-(k − 1)-
neighborhood monochromatic sequence of length ℓ = R(k−1)(t − 1, s − 1) + 1, then we are done.
The (k− 1)-subsets of [ℓ− 1] are colored according to c∗. By the property of the Ramsey number
R(k−1)(t − 1, s − 1), we �nd an index subset I ⊆ [ℓ − 1] of size t − 1 which is monochromatic
red under c∗ or an index subset I ⊆ [ℓ − 1] of size s − 1 which is monochromatic blue under
c∗. Then we claim that the subset T := {vi : i ∈ I} ∪ {vℓ} is c-monochromatic in the same
color as I is c∗-monochromatic in. And then of course it also has the required size (t in case
of color red and s in case of color blue). To see this, let us take an arbitrary k-element subset
Q ⊆ T . By the right-(k−1)-neighborhood monochromatic property of the coloring c∗ we have that
c(Q) = c∗(Qmin(k−1)), where Qmin(k−1) ⊆ I is a (k−1)-element subset of the c∗-monochromatic
index subset I.

So to complete the proof of our theorem we need to construct the right-(k − 1)-neighborhood
monochromatic sequence of the required length. Our plan is to construct a sequence v1, . . . vi
recursively. We will maintain a set Ni of vertices that are still �eligible� to be added to the
sequence, that is, the c-color of any k-subset of vertices of Vi := {v1, . . . vi} ∪ Ni with at least
k − 1 vertices among v1, . . . , vi indeed only depends on the k − 1 smallest indices. We will pick
the next vertex vi+1 arbitrarily from Ni and then reduce Ni to create Ni+1 in order for the right-
(k− 1)-neighborhood monochromatic property also to hold for k-subsets involving the new vertex
vi+1.

To start let us select arbitrary vertices v1, . . . vk−2 ∈ [n] and set Nk−2 = [n] \ {v1, . . . , vk−2}.
Suppose that i ≥ k − 2 and we are given a sequence v1, . . . , vi and a set Ni disjoint from it, such
that there exists a coloring c∗ :

(
[i]

k−1

)
→ {red, blue} with the property that for every k-subset

T ⊆ {v1, . . . , vi} ∪Ni with |T ∩ {v1, . . . , vi}| ≥ k − 1, we have c(T ) = c∗(Tmin(k − 1)). Note that
such a sequence v1, . . . , vi is always right-(k−1)-neighborhood monochromatic and that our initial
choices vacuously satisfy the condition.

We choose the next vertex vi+1 ∈ Ni arbitrarily. In order to designate Ni+1 ⊆ Ni \ {vi+1}, we
de�ne a function c̃ : Ni \{vi+1} → {red, blue}(

i
k−2), such that the components of c̃(w) for a vertex

w ∈ Ni \ {vi+1} correspond to the (k − 2)-subsets of [i], and for the component corresponding to

a subset L ∈
(

[i]
k−2

)
we have

c̃(w)L := c(L ∪ {vi+1, w}).

This function is so de�ned that if we chose Ni+1 to be the c̃-inverse image of any red/blue-vector,
then we ensure that the desired property of the sequence v1, . . . , vi and the function c∗ extends
to the (k − 1)-element index subsets containing i + 1. Indeed, choosing Ni+1 to be the inverse

image of the �xed red/blue-vector α ∈ {red, blue}(
i

k−2), we can extend c∗ to
(
[i+1]
k−1

)
as follows.

The function c∗ is already de�ned for sets in
(

[i]
k−1

)
, now choose an index set I ∈

(
[i+1]
k−1

)
that

contains i + 1 and de�ne c∗(I) := αI\{i+1}. To check that this de�nition is in line with what is
desired from c∗, let us take any k-subset Q ⊆ {v1, . . . , vi+1} ∪ Ni+1, with vi+1 ∈ Q and having

|Q ∩ {v1, . . . vi+1}| = k − 1. Then Q is of the form Q = {vj : j ∈ J} ∪ {vi+1, w}, where J ⊆
(

[i]
k−2

)
and w ∈ Ni+1. In particular we have Qmin(k − 1) = J ∪ {i + 1}. By de�nition of c̃, and c∗, and
since w ∈ c̃−1(α), we obtain

c(Q) = c̃(w)J = αJ = c∗(J ∪ {i+ 1}) = c∗(Qmin(k − 1)),
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verifying the desired property of c∗.

To make Ni+1 large we choose the largest possible c̃-inverse image. Hence Ni+1 can be chosen so
its size is at least the average size of an inverse image, that is

|Ni+1| ≥
⌈
|Ni| − 1

2(
i

k−2)

⌉
, (1.2)

for every i ≥ k − 2.

Now let us estimate the size of n required in this proof. To make the sequence long enough, that
is, to be able to choose the ℓth element of the sequence, we need that the set Nℓ−1 has at least one
element. To ensure that |Nℓ−1| ≥ 1 we use (1.2) repeatedly and choose n = |Nk−2|+ k − 2 large

enough. Namely, if |Nk−2| ≥ 2(
ℓ

k−1) then we can choose the subsets Nk−2 ⊇ Nk−1 ⊇ · · · ⊇ Nℓ−1,
such that

2(
ℓ−1
k−1) ≤ |Nk−2| ≤ 2(

k−2
k−2)|Nk−1| ≤ 2(

k−2
k−2) · 2(

k−1
k−2)|Nk| ≤ · · · ≤

ℓ−2∏
j=k−2

2(
j

k−2)|Nℓ−1| =

= 2
∑ℓ−2

j=k−2 (
j

k−2) · |Nℓ−1| = 2(
ℓ−1
k−1) · |Nℓ−1|,

implying that Nℓ−1 is not empty and vℓ can be chosen.

In conclusion, the choice

n = 2(
ℓ−1
k−1) + k − 2 = O

(
2ℓ

k−1
)

with
ℓ = R(k−1)(t, s)

is su�ciently large for our selection process to go through and thus provides an upper bound on
the Ramsey number R(k)(t, s).

By repeated application of this theorem we obtain a greatly improved upper bound compared to
the �rst proof. We highlight this here by explicitly writing out the bound for the symmetric case
t = s.

Corollary 1.3.5. R(k)(t, t) is upper bounded by a tower function of t of height k.

This upper bound is actually not that far from the truth. There is a construction of a red/blue-
coloring of the k-sets without a monochromatic t-clique on a vertex set of size that is a tower
function of t of height k − 1. To decide which height is the truth, even just for the 3-uniform
Ramsey function, is worth a $500 reward (by Erd®s).

1.3.3 The Canonical Ramsey Theorem

In this section, we temporarily abandon our pursuit of the various bounds in �quantitative� Ramsey
theory and return to the �qualitative� philosophical orgins of �complete disorder is impossible�.
The fundamental question of Ramsey theory is: given a classi�cation (i.e., a coloring) of the
elements of some structure, what sort of �order� can one necessarily �nd in it? We have seen many
examples where a structure is colored with an arbitrary �nite number of colors and we concluded
the existence of a large �orderly� substructure (where by �orderly� we meant a substructure that
is monochromatic).

An instance of this was the in�nite Ramsey theorem (Theorem 1.1.6). This can be generalized for
hypergraphs and arbitrary �nite number of colors.

Theorem 1.3.6 (HW). For any positive integer r and any r-colouring of
(N
k

)
, there exists an

in�nite set S ⊆ N for which
(
S
k

)
is monochromatic.
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In this subsection we will ask ourselves whether complete disorder would still be impossible if we
colored our structire by in�nitely many colors. We immediately realize that we must revise our
notion of �orderly� substruture, as coloring each pair in

(N
2

)
by a di�erent color will not even leave

us a monochromatic subset of size three!5

In light of this example it seems necessary to include the situation when all pairs of elements of a
set have distinct colors among orderly structures. This motivates the following de�nition.

De�nition 1.3.7. Given a colouring c :
(N
2

)
→ C, a set S ⊆ N is called c-rainbow if no two pairs

of S have the same color.

In the above coloring example the whole N is a rainbow set. Is this enough for the concept of
�orderly�? Are we always guaranteed to �nd either an in�nite monochromatic set or an in�nite
rainbow set? The answer is still no. To see this, simply colour each pair {i, j} with its minimal
element min{i, j}. In this coloring we still do not �nd a monochromatic set of size three, but
neither �nd a rainbow set of size three. This example motivates the following de�nition.

De�nition 1.3.8. Given a colouring c :
(N
2

)
→ C, a set S ⊆ N is called c-left-injective if there is

an injective map c∗ : N → C, such that c(ij) = c∗(min{i, j}).

The name left-injective subset originates in its property that the colour of an edge is uniquely
determined by its left endpoint. Note that the a left-injective subset forms a right-monochromatic
sequence (from the last subsections).

Of course there is nothing special about the minimum, we could also de�ne a coloring of
(N
2

)
by

setting the color of every edge to be the maximum of its endpoints. Then there is no monochro-
matic, no rainbox, and no right-injective set of size three. Hence analogously we de�ne the notion
of right-injective colouring.

De�nition 1.3.9. Given a colouring c :
(N
2

)
→ C, a set S ⊆ N is called c-right-injective if there

is an injective map c∗ : N → C, such that c(ij) = c∗(max{i, j}).

Surprisingly, it is not only necessary but also su�cient that we extend our notion of �orderly�
subset to include these four cases: one of them will occur! This is stated in the next Canonical
Ramsey Theorem.

Theorem 1.3.10 (Erd®s-Rado, 1950). Let c :
(N
2

)
→ C be a coloring. Then there is some in�nite

set S ⊆ N such that either

(i) S is c-monochromatic, or

(ii) S is c-left-injective, or

(iii) S is c-right-injective, or

(iv) S is c-rainbow.

Remarks

� This is a strengthening of Ramsey's Theorem for �nitely many colors from the Homework
(Theorem 1.3.6). Indeed, when the number of colors used is �nite, then options (ii)-(iv) are
impossible.)

� The colorings appearing on these four types of sets are called the canonical colorings. In
case (iv) the color of an edge is determined injectively by both enpoints, in case (ii) it is
determined by the left endpoint, in case (iii) it is determined by the right endpoint, and
in case (i) it is just determined (by no endpoint). The theorem states that every colouring
contains an in�nite canonically coloured clique.

5For notational simplicity we restrict ourselves further to the 2-uniform case; analogous results hold for arbitrary
uniformity k.
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Proof. The idea of the proof, just like in the approach to the Happy-Ending Problem, is to try to
use local information to deduce something for the global structure. Since we will need to compare
the colors on pairs of edges, we should be interested in the coloring of 4-element subsets. One
of the main questions is how to reduce the number of colors to �nite, so that we are able to
use the 4-uniform Ramsey Theorem. To this end we will colour the 4-subsets of N such that we
encode the information about the color pattern on the edges between these four integers. This
coloring will use only �nitely many colors since we will only be interested in the colour pattern i.e.
keeping track of which edges have the same colour and which do not, but we will not care exactly
which particular colors we use to create this pattern. It might sound surprising at �rst that this
information, the color pattern on 4-element sets, is su�cient to deduce the existence of an in�nite
set with a canonical coloring.

Formally, let us de�ne a coloring ĉ :
(N
4

)
→ B

((
[4]
2

))
where B

((
[4]
2

))
is the set of all set partitions6

of the six-element set
(
[4]
2

)
. The value ĉ({i1, i2, i3, i4}) for some 4-subset {i1, i2, i3, i4} with i1 <

i2 < i3 < i4 is just the set partition that is induced by the inverse images of c on the set
({i1,i2,i3,i4}

2

)
and hence in turn on the set

(
[4]
2

)
.

For example, the value of ĉ,

� for a rainbow 4-set is {{12}, {13}, {14}, {23}, {24}, {34}},

� for a monochromatic 4-set is {{12, 13, 14, 23, 24, 34}},

� for a left-injective subset is {{12, 13, 14}, {23, 24}, {34}},

� for a right-injective subset is {{12}, {13, 23}, {14, 24, 34}}.

We use the 4-uniform Ramsey Theorem for 203 colors (Theorem 1.3.6) and �nd an in�nite ĉ-
monochromatic subset S = {s1 < s2 < · · · < si < · · · } ⊆ N. In other words there is a set partition

p ∈ B
((

[4]
2

))
such that for every 4-subset T = {i1 < i2 < i3 < i4} ⊆ S we have c(iuiv) = c(iwiz)

for some uv,wz ∈
(
[4]
2

)
if and only if uv and wz are in the same class of the set partition p. Now

we have a little case distinction based on how p looks like.

Case 1. p = {{12}, {13}, {14}, {23}, {24}, {34}}. In this case the whole S is rainbow. Indeed, for
any two edges s1s2 and s3s4, there exists a 4-element subset T containing both of these edges.
Since ĉ(T ) = p, all edges, in particular also s1s2 and s3s4 have distinct c-colors.

Case 2. There is a partition class of p with at least two pairs.

We divide further into subcases, depending on whether there is a class containing a disjoint pair.

Case 2a. There are two pairs that are disjoint and are contained in the same partition class of p.

If 12 and 34 are in the same class then S is an in�nite c-monochromatic subset, as the color of
any two edges sxsy and susv are equal since they are both equal to the color of the edge sasa+1,
say with a = max{x, y, u, v}+ 1.

If 14 and 23 are in the same class then S \ {s1} is an in�nite c-monochromatic subset, since the
color of any two edges sxsy and susv, with x, y, u, v ≥ 2, are both equal to that of s1sa, where
a = max{x, y, u, v}+ 1.

If 13 and 24 are in the same class, then Seven = {s2i : i ∈ N} is an in�nite c-monochromatic
subset. Indeed, suppose we have two pairs sxsy and susv with x, y, u, v ∈ 2N and, without loss of
generality, x < y, u < v and x < u. Then, if u < y < v, these two edges must be the same color.
If y < u, then both edges are the same color as the edge sx+1su+1. Finally, if v < y, then both
edges are the same color as su+1sy+1.

6The cardinality of B
(([4]

2

))
is the sixth Bell number B6 = 203, which is the sum of the Stirling numbers

S(6, k)of the second kind with the summation running till k = 6.
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Case 2b. Every two pairs that are disjoint are in di�erent partition classes of p.

Consequently there must be two pairs xz and yz ∈
(
[4]
2

)
that are in the same partition class of p.

Without loss of generality x < y. Using a similar argument as before, one can show the following:

If x < z < y, then Seven is c-monochromatic.

If z < y < x, then Seven is c-left-injective.

If y < x < z, then Seven is c-right-injective.

Remark. The Canonical Ramsey Theorem extends to the k-uniform setting. There we will have
to admit 2k canonical colourings.
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