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Outline
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• Real-Time Operating Systems 

• Real-Time Scheduling 

‣ Schedulability Analysis and unbounded priority inversion
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Introduction to Embedded (and) Real-Time Systems
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Embedded Systems
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What are Embedded Systems?

‣ Typical textbook definition: 

A computer that is a component in a larger system, and is not visible as a 

computer to a user of that system. 

‣ But - An embedded system may: 

• Look and function like a traditional computer, 

• Have a typical computer User Interface, or 

• Not contain a traditional CPU at all!
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What are Embedded Systems?
‣Our (better) definition: 

A programmable component or subsystem providing  some intelligence functions  to 

the system of which it is a part.   

‣This can include: 

• Any device, or collection of devices, that contain one or more dedicated computers, 

microprocessors, or micro-controllers. 

•Microprocessor chips and Programmable logic elements (FPGA, ASIC etc.) 

•Device(s) may be local - Printer, automobile, etc. 

•Devices may be distributed - Aircraft, ship, internet appliance. 

‣Key point: 

• Embedded computing devices have rigidly defined operational bounds.  

•Not general purpose computers (PC, Unix workstation).
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Characteristics of Embedded Systems

Constraints 

• Power/Energy constraints.

• Reliability

• Robust

• Moderate to severe real-time 
constraints.

Properties

• No architectural link to standard 
platforms.

• Embedded systems may or may not 
have Operating System (OS) 
services available.

• Tolerance for bugs is much lower in 
embedded systems than in desktop 
computers.

• Embedded systems are cost 
sensitive.
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Emergency airworthiness directive by FAA

‣ ISSUE DATE: August 29, 2005  

‣ AD: 2005-18-51; FAA-2005-22252; Directorate Identifier 2005-NM-182-AD 

‣ Report: a recent report of a significant nose-up pitch event on a Boeing Model 

777-200 series airplane while climbing through 36,000 feet altitude. The flight 

crew disconnected the autopilot and stabilized the airplane, during which time the 

airplane climbed above 41,000 feet, decelerated to a minimum speed of 158 

knots, and activated the stick shaker. Operational Program Software (OPS) 
using data from faulted sensors, if not corrected, could result in anomalies of 

the fly-by-wire primary flight control, autopilot, auto-throttle, pilot display, and auto-

brake systems, which could result in high pilot workload, deviation from the 

intended flight path, and possible loss of control of the airplane.
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Emergency airworthiness directive by FAA

‣ ISSUE DATE: February 5, 2009  

‣ FAA-2007-0254; Directorate Identifier 2007-NM-209-AD; Amendment 39-15795; 

AD 2009-02-05 

‣ Report: We are adopting a new airworthiness directive (AD) for certain Boeing 
Model 777 airplanes. This AD requires installing software upgrades to the 

airplane information management system (AIMS) located in the flight 

compartment. This AD results from an investigation that revealed that detrimental 

effects could occur on certain AIMS software during flight. We are issuing this AD 

to prevent an unannunciated loss of cabin pressure. If an undetected loss of 

pressure event were to cause an unsafe pressure in the cabin, the flight crew 

could become incapacitated.
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Misconceptions for Embedded Systems

‣ Embedded system design is just an engineering 

practice, not a science. 

‣ Endless device driver implementation. 

‣ Porting operating systems from ARM platform, to 

Amtel platform, to Hitachi platform, etc. 

‣ Embedded systems are tiny systems. 

‣ Embedded systems are consumer electronics.
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Let’s Define Some Terms
‣ Microprocessor 

• An integrated circuit which forms the central processing unit for a computer or 

embedded controller, but requires additional support circuitry to function 

• MC68000, 80486, Pentium, K6, MicroChip PIC, etc. 

‣ Microcontroller 

• A microprocessor plus additional peripheral support devices integrated into a 

single package 

• Peripheral support devices may include: 

- Serial ports ( COM ), Parallel ( Ports ), Ethernet ports, A/D & D/A 

- Interval timers, watchdog timers, event counter/timers, real time clock ( RTC ) 

- Other local processors ( DSP, numeric coprocessor, peripheral controller ) 

• BrainStem on PPRK is a microcontroller



13

Microprocessor and Microcontroller
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A “Typical” Embedded System 

Microprocessor
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Data Bus
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Address Decode

Clock Generation 
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Read Only  
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Recent developments
‣ Moore’s Law: the complexity of integrated circuits will double every 18 months 

‣ Process technology able to put more and more functionality on the same chip as 

the cpu 

‣ Buzz Word: System on a Chip (SOC), or System on Silicon
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Let’s Define Some Terms - 2
‣ Target system 

• The embedded system under development 

‣ Host computer 

• The standard platform being used to develop the software and link to the target 

system for debugging 

‣ Cross-development 

• Using host-based tools to create a code image that will execute on a different 

instruction set architecture 

• Example:  

- Write a C program on your PC 

- Compile it to run on a PowerPC 603 using a Cross-compiler 

- Create a runtime image for execution in the target system 
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The embedded life-cycle
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Let’s Define Some Terms - 3

‣ Time sensitive 

• If a task or operation does not complete in the specified amount of time, the 

embedded device will perform below design requirements 

• Example: A laser printer prints 8 pagers per minute instead of 10 ppm ( HP 

trumps Lexmark once again! ) 

• Device continues to function. 

‣ Time critical 

• If a task or operation does not complete in the specified amount of time, the 

embedded device will fail. 

• Example: Flight control system on a fly-by-wire aircraft. 

• Device will not operate.
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Real-Time Systems
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Computation Modes
Program runs independent of outside world.
Results written to file or output device.
Example: Compiler

User may interact with program.
No time constraints involved.
Example: Spreadsheet

Program interacts strongly with environment.
Time constraints imposed.
Example: Video Game

Batch Mode

Online Mode

Real-Time Mode
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Real-time Systems

‣ A real-time system is one where the timing of a result is just as important as the 

result itself. 

• A correct answer produced too late is just as bad as an incorrect answer or no 

answer at all. 

• Timeliness is the single most important aspect of a real-time system. 

‣ Timing constraints can vary between different real-time systems.  Therefore, 

systems can fall into one of three categories: 

• Soft Real-time Systems 

• Hard Real-time Systems 

• Firm Real-time Systems

A real-time system is one in which the correctness of the 
computations not only depends upon the logical 
correctness of the computation but also upon the time in 
which the result is produced.



22

Soft Real-time Systems

‣ Timing requirements are defined by using an average response time.  A single 

computation arriving late is not significant to the operation of the system, though 

many late arrivals might be. 

‣ Example:  Airline reservation system - If a single computation is late, the system’s 

response time may lag.  However, the only consequence would be a frustrated 

potential passenger.
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Hard Real-Time Systems
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Hard Real-time Systems

‣ Timing requirements are vital!   

‣ A response that’s late is incorrect and system failure results.   

‣ Activities must be completed by a specified deadline, always.   

‣ Deadlines can be a specific time, a time interval, or the arrival of an event.  

‣ If a deadline is missed the task fails.  This demands that the system has the 

ability to predict how long computations will take in advance. 

‣ Example:  Pacemaker – If the system takes longer than expected to initiate 

treatment, patient death could result.
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Firm Real-time Systems

‣ Timing requirements are a combination of both hard and soft ones.  Typically the 

computation will have a shorter soft requirement and a longer hard requirement. 

‣ Example:  Ventilator – The system must ventilate a patient so many times within a 

given time period.  But a few second delay in the initiation of the patient’s breath 

is allowed, but not more.
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Real-time Systems

‣The distinction between systems can obviously become 
fuzzy.   
• At one end of the software spectrum are non-real-time systems 

where all deadlines can be missed.   
• At the other end are hard real-time systems where every 

deadline must be met.
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Copyright © 2007 CHI-SHENG SHIHMisconceptions of real-time systems

‣ Real-time computing is equivalent to fast computing. 

‣ Real-time programming is assembly coding. 

‣ ‘‘Real-time’’ is performance engineering. 

‣ Real-time systems function in a static environment (or closed system).
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Real-Time Systems (RTS)

Firm RTS

Soft RTSHard RTS
Proprietary

Open

Centralized

Distributed

Embedded
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Milestones of Embedded Systems 
(Reference)
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 ~ 1940

‣ 1936: Alan Turing publishes article "On 

Computable Numbers, with an Application 

to the Entscheidungsproblem" which paves 

the way not only for computers but for 

stored-program architectures.  

‣ 1939: John Atanasoff and Clifford Berry 

create a prototype of the Atanasoff–Berry 

Computer (ABC), the first digital computer.
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1940 ~ 1960

‣ 1945: First computer bug found by Grace 

Hopper. 

‣ 1947: The first practical point-contact 

transistor at Bell Labs by William Shockley, 

John Bardeen and Walter Brattain 

‣ 1950: Assembly languages were first 

developed.
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1960 ~ 1980

‣ 1963: AGC, the first embedded systems, was 

installed on Appollo 7 through 17. 

• Autonetics D-17 guidance computer for the 

Minuteman missile 

‣ 1971: Intel releases first microprocessor, the 4004, a 

4-bit central processing unit. 

‣ 1972: Dennis Ritchie developed C, the most used 

programming language for embedded systems. 

‣ 1973: C. L. Liu and James W. Layland published the 

most fundamental scheduling theory for embedded 

real-time systems: “Scheduling Algorithms for 

Multiprogramming in a Hard-Real-Time Environment.” 

‣ 1976: Apple I computer was released.
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1980 ~ 2000

‣ 1980: Hunter&Ready (James Ready and Colin Hunter's 
company) release first commercial operating system for 
embedded systems, VRTX (Versatile Real-Time Executive).  

‣ 1980s: WindRiver acquires rights to resell VRTX with an 
extension named VxWorks.  

‣ 1980: Intel introduces 8051 (Harvard architecture, single chip 
micro-controller).  

‣ 1985: Acorn Computers Ltd. makes samples of ARM1 
architecture available. ARM2 ships in 1986.  

‣ 1985: Joint Test Action Group (JTAG) forms 

‣ 1989: First Embedded Systems Conference is held at the Sir 
Francis Drake hotel in San Francisco. 

‣ 1995: Sun release JAVA. 

‣ 1996: Microsoft releases first version of Windows Embedded CE.  

‣ 1997: UML version 1.0 proposed to the OMG.
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2000 ~ 2010

‣ 2001: First Tele-surgery machine 

‣ 2004: Sony and IBM begin producing cell 

computer chips, a supercomputer on a chip 

was on your palm.  

‣ 2004: First urban challenge and no 

participant finished the challenge. 

‣ 2005:IBM, Intel and AMD released their first 

multi-core processors. 

‣ 2007: Third urban challenge

Prof Jacques Marescaux, New York & 
European Institute of Telesurgery, 
Strasbourg

Round distance =14,000 km

Round Trip Time = 200 msec; video and hi-
speed fibre-optic link

June 2001: Johns Hopkins University, 
Baltimore & Rome Policlinico Casilino 
University  

http://news.bbc.co.uk/2/hi/science/nature/1552211.stm
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Participants for 2007 Challenges

‣ Technical Abilities: 

‣ Real-time by-wire actuator 

control 

‣ Mission and path planning 

‣ Perception and multiple 

sensor fusion 

‣ Vehicle behavior 

‣ Situational awareness 

‣ System Engineering

Thanks to Prof. Rajkumar @CMU for pictures and texts
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Trends for Embedded Systems Design

‣ Machine centric to Human Centric

‣ Performance centric to Environment friendly

‣ Computing everywhere to Invisible computing

Cyber-Physical 
Systems
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Summary for Embedded System Design

Embedded system design is a science for understanding

• interaction among hardware and software components,  

• resource management, 

• performance predicability, and 

• systems integration. 

so as to design robust and cost effective embedded systems. 
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Real-Time Operating Systems
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What is a Real-Time Operating System?

‣ What is a real-time operating system?  

• An operating system enforcing timing constraints, Lynx, pSOS, VxWorks, 

eCOS, uCLinux, LynxOS, RTLinux, KURT,RTAI, uC/OS-II, …
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RTOS at a Glance
‣ AMX, KwikNet, KwikPeg (from KADAK Products Ltd.)  

‣ C EXECUTIVE (from JMI Software Systems, Inc.)  

‣ CMX-RTX (from CMX Systems, Inc.)  

‣ DeltaOS (from CoreTek Systems, Inc.) 

‣ eCos (from Red Hat, Inc.) 

‣ embOS (from SEGGER Microcontroller Systeme GmbH)  

‣ eRTOS (from JK microsystems, Inc.) 

‣ ETS (from VenturCom) 

‣ EYRX (from Eyring Corporation) 

‣ INTEGRITY (from Green Hills Software, Inc.) 

‣ INtime® real time extension to Windows® (from TenAsys 
Corporation)  

‣ IRIX (from SGI) 

‣ iRMX (from TenAsys Corporation)  

‣ Jbed (from esmertec, inc.) 

‣ LynxOS (from LynuxWorks) 

‣ MQX (from Precise Software Technologies Inc)  

‣ Nucleus PLUS (AcceleratedTechnology, ESD Mentor Graphics)  

‣ On Time RTOS-32 (from On Time Informatik GmbH) 

‣ OS-9 (from Microware Systems Corporation)  

‣ OSE (from OSE Systems )

• PDOS (from Eyring Corporation) 
• PSX (from JMI Software Systems, Inc.) 
• QNX Neutrino (from QNX Software Systems Ltd.) 
• QNX4 (from QNX Software Systems Ltd.) 
• REDICE-Linux (from REDSonic, Inc.) 
• RTLinux (from Finite State Machine Labs, Inc.) 
• RTX 5.0 (from VenturCom) 
• Portos (from Rabih Chrabieh) 
• smx (Micro Digital, Inc.)  
• SuperTask! (from US Software) 
• ThreadX (from Express Logic, Inc.) 
• Treck MicroC/OS-II (from Elmic Systems USA, Inc.) 
• TronTask! (from US Software) 
• TTPos: (from TTTech Computertechnik AG) 
• VxWorks 5.4 (from Wind River) 
• SCORE, DACS and TADS (from DDC-I) 
• Nimble - the SoC RTOS (from Eddy Solutions) 
• Nucleus (from Accelerated Technology) 
• Fusion RTOS (from DSP OS, Inc.) 
• FreeRTOS (from Richard Barry) 
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Systems Issues

‣ In RTS, the OS and AP are very tightly coupled, than time-sharing systems. 

• shared memory, special buses (instruction, data, event, memory, control, 

invalidate, …). 

‣ A RTOS must response to internal and external events deterministically. 

‣ Low-priority tasks may wait for high-priority task or events indefinitely. 

‣ System architecture needs to provide high computational speed, high-speed 

interrupt handling, and high I/O throughput, + fault-tolerance.
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Real-Time Scheduling
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Copyright © 2007 CHI-SHENG SHIHReal-Time scheduling algorithms

‣ We use real-time scheduling algorithms every day. 

• Dynamic priority scheduling algorithms  

- How do you plan your days to do the homework and exams?  

- Earliest Deadline First algorithm [Liu and Layland 1973] 

• Static priority scheduling algorithms 

- Do you prioritize your works? 

- Rate-Monotonic algorithm [Liu and Layland 1973] 

‣ The algorithms should schedule the tasks to meeting the requirements.
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Introduction to Real-Time Process Scheduling

‣ Q: Many theories and algorithms in real-time process scheduling seem to have 

simplified assumptions without direct solutions to engineers’ problems. Why 

should we know them? 

‣ A: 

• Provide insight in choosing a good system design and scheduling algorithm. 

• Avoid poor or erroneous choices.
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Sporadic Process Scheduling 
(Sprunt, 1989, etc.)

Independent Process Scheduling 
(Liu & Layland, 1973, etc.)

Process Scheduling with 
Non-Preemptable Resources 
(Mok, 1983, Sha, Rajkumar, 1986, Baker, 1991, etc.)

Multiprocessor Process Scheduling 
(Dhall, 1972-, etc.)

Process Scheduling with End-to-End Delays 
(Stankovic, Gerber, Lin, etc, since ?.)

Job Shop Scheduling

Process Scheduling with 
Probabilistic Guarantee 
(Liu, Lehoczky, etc, since 1995.)

Process Scheduling with 
Realistic Task Characteristics 
(Liu, Mok, etc, since 1996.)

Process Scheduling with Multiple Resources Rate-Based Scheduling 
(Buttazzo, Liu, Brauah, Kuo, etc, since 1995.)

Non-preemptable Scheduling 
(Baruah, 1990-, etc.)

Time
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Uni-processor Scheduling

‣ Fixed-Priority vs. Dynamic-Priority Scheduling 

‣ Rate-Monotonic Scheduling Algorithm 

‣ Earliest Deadline First Scheduling
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Process Model
‣ Periodic process 

• each periodic process arrives at a regular frequency – a special case of 

demand. 

• r: ready time, d: relative deadline, p: period, c: worst case computation time. 

• For example, maintaining a display 

‣ Sporadic process 

• An aperiodic process with bounded inter-arrival time p. 

• For example, turning on a light 

‣ Other requirements and issues: 

• process synchronization including precedence and critical sections, process 

value, etc.
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Performance Metrics

‣ Metrics for hard real-time processes: 

• Schedulability, etc. 

‣ Metrics for soft real-time processes: 

• Miss ratio 

• Accumulated value 

• Response time, etc. 

‣ Other metrics: 

• Optimality, overload handling, mode-change handling, stability, jitter, etc. 

• Combinations of metrics.
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Definitions

‣ Preemptive scheduling: allows process preemptions. (vs. nonpreemptive 

scheduling) 

‣ Online scheduling: allocates resources for processes depending on the current 

workload. (vs. offline scheduling) 

‣ Static scheduling: operates on a fixed set of processes and produces a single 

schedule that is fixed at all time. (vs. dynamic scheduling) 

‣ Firm real-time process: will be killed after it misses its deadline. (vs. hard and soft 

real-time) 

‣ Fixed-priority scheduling: in which the priority of each process is fixed for any 

instantiation. (vs. dynamic-priority scheduling)
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Rate Monotonic Scheduling Algorithm

‣ Assumptions: 

• all periodic fixed-priority processes  

• relative deadline = period 

• independent process - no non-preemptable resources 

‣ Rate Monotonic (RM) Scheduling Algorithm 

• RM priority assignment: priority ~ 1/period. 

• preemptive priority-driven scheduling. 

‣ Example: T1 (p1=4, c1=2) and T2 (p2=5, c2=1)

0 1 2 3 4 5 6 7 8



52

Rate Monotonic Scheduling Algorithm

‣ Critical Instant 

• An instant at which a request of the process have the largest completion/response time. 

• An instance at which the process is requested simultaneously with requests of all 

higher priority processes. 

‣ Usages 

• Worst-case analysis 

• Fully utilization of the processor power 

• Example: T1 (p1=4, c1=2) and T2 (p2=5, c2=1)

0 1 2 3 4 5 6 7 8
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Rate-Monotonic Analysis

‣ Schedulability Test: 

• A sufficient but not necessary condition. 

• Achievable utilization factor αof a scheduling policy P: any process set with 

total utilization factor          no more than α is schedulable. 

• Given n processes,  

‣ Stability: 

• Let processes be sorted in RM order. The ith process is schedulable if  

• An optimal fixed priority scheduling algorithm
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Earliest Deadline First Scheduling Algorithm

‣ Assumptions (similar to RM): 
• all periodic dynamic-priority processes 
• relative deadline = period 
• independent process - no non-preemptable resources 

‣ Earliest Deadline First (EDF) Scheduling Algorithm: 
• EDF priority assignment: priority ~ absolute deadline. i.e., arrival time t 

+ relative deadline d. 
• preemptive priority-driven scheduling 

‣ Example: T1(c1=1, p1=2), T2(c2=2, p2=7)

0 1 2 3 4 5 6 7 8
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Copyright © 2007 CHI-SHENG SHIHEarliest Deadline First (EDF) Scheduling Algorithm

‣ Schedulability Test: 

• A sufficient and necessary condition 

• Any process set is schedulable by EDF iff 

‣ EDF is optimal for any independent process scheduling algorithms. 

‣ However, its implementation has considerable overheads on OS’s with a fixed-

priority scheduler and is bad for (transiently) overloaded systems.

1≤∑
i

i

P
c
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Priority Inversion and Schedulability Analysis
(Optional)
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What Happened on Mars?

‣ Pathfinder was launched on Dec. 4 1996 and landed on Mars on July 4, 1997. 

‣ All of sudden, the pathfinder kept reset itself and doing nothing. 
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What happened on Mars?

‣ Pathfinder contained an "information bus", which you can think of as a 

shared memory area used for passing information between different 

components of the spacecraft.  

‣ A high priority task was blocked for unexpected long time interval. 

‣ After some time had passed, a watchdog timer would go off, notice that 

the data bus task had not been executed for some time, conclude that 

something had gone drastically wrong, and initiate a total system reset.  

‣ This scenario is a classic case of priority inversion. 
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Unbounded Priority Inversion 
τ1:{...P(S)...V(S)...} 

τ3:{...P(S)...V(S)...}

τ1(h)

τ2(m)

τ3(l)

Legend 
S Locked 
Executing 
Blocked

time

S Locked S Unlocked

B

B
S Locked S UnlockedAttempt to Lock S
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Basic Priority Inheritance Protocol - 1 

τ2

τ3

τ4(l)

Ready

τ1(h)

Ready

Attempts to lock S S Unlocked

B

S Locked

time

S Locked
S Unlocked

τ3: is INDIRECTLY BLOCKED by τ4 

 since τ4 inherits the priority of τ2

Legend 
S Locked 
Executing 
Blocked B

time

τ2:{...P(S)...V(S)...} 

τ4:{...P(S)...V(S)...}
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Legend 
S2 Locked 
S1 Locked 
Executing 
Blocked

Chained Blocking  

τ2

τ3(l)

time

S2 Locked S2 Unlocked

B

Attempts to lock S1

S1 Unlocked

τ1(h) B

S1S1 Locked

\

Attempts to lock S2

B

S2 Locked S2 Unlocked
S1 Unlocked

S1 Locked

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...} 
τ2:{...P(S1)...V(S1)...} 
τ3:{...P(S2)...V(S2)...}
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Legend 
S1 Locked 
S2 Locked 
Executing 
Blocked

Deadlock Under  BPIP 

τ1(h)

τ2(l)

time

S2 Locked

B

Attempts to lock S1

B

S1 Locked
Attempts to lock S2

B

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...} 
τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}
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Priority Ceiling Protocol
‣ A priority ceiling is assigned to each semaphore, which is equal to the highest 

priority task that may use this semaphore. 

‣ A task can lock a semaphore if and only if its priority is higher than the priority 

ceilings of all semaphores ALREADY LOCKED by other tasks. 

‣ If a task is blocked by lower priority tasks, the lower priority task inherits its 

priority. 

‣ Under priority ceiling protocol, a task can be blocked by lower priority tasks at 

most once no matter how many semaphores they share. In addition, tasks 

cannot be deadlocked. 

‣ Under priority inheritance protocol, tasks could be deadlocked and chained 

blocking is a fact of life. But a task is blocked  at most by n lower priority tasks 

sharing resources with it or with higher priority tasks, when there is no deadlock.
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Legend 
S1 Locked 
S2 Locked 
Executing 
Blocked

Deadlock Avoidance: Using PCP 

τ1(h)

τ2(l)

tim
e

Locks S2

B

Locks S1

Attempts to lock S1 
but can’t. why?

B

Unlocks S1
Unlocks S2

Locks S1
Unlocks S1

Locks S2 Unlocks S2

If S1 were locked, deadlock would follow.

Note:  Task τ2 can still lock S1 since it owns the lock, S1 is not 
locked  by OTHER  tasks

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...} 
τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}
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Legend 
S1 Locked 
S2 Locked 
Executing 
Blocked

Blocked at Most Once (PCP)

τ2

τ3(l)

tim
e

S2 Locked S2 Unlocked

B

Attempts to lock S1
S1 Unlocked

τ1(h)

B

Attempts to lock S1

S2 Locked
S2 Unlocked S1 Unlocked

S1 Locked

S1 Locked

B

Attempts to lock S1, but BLOCKED by τ3 . Why?

Attempts to lock S1 
but can’t. Why?    

τ3 inherit τ2’s 
priority

τ3 inherit τ1’s priority

Τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...} 

Τ2:{...P(S1)...V(S1)...} 

Τ3:{...P(S2)...V(S2)...}
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Sample Problem: Worst-Case Blocking Times 

Data 
Structure 1

Data 
Structure 2

Task 1

Task 2

Task 3

W

X

Y

Z
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Sample Problem: Worst-Case Blocking Times 

‣ Un-nested semaphores 
• First, examine task 3. Recall that blocking is when a lower priority task 

delays the execution of a higher priority task.  Since task 3 has the 
lowest priority, its blocking time will be 0. 

• For task 2, it could only be blocked by task 3.  Thus, its B is equal to Z. 
• Similarly, task 1’s B is equal to X.  Because semaphores cannot be 

nested, data structure 2 will not affect task 1. 

‣ Nested semaphores 
• Task 3 and 2 are the same as the un-nested case. 
• For task 1, imagine the worst case sequence of events.
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Sample Problem: Worst-Case Blocking Times 

Nested semaphores 

‣ The worst sequence for Task 1: 

1. Task 3 acquires data structure 2. 
2. Task 2 acquires data structure 1. 
3. Task 2 asks for data structure 2 (but cannot get it). 

- What is Task 3’s priority now? 
- Task 3 has priority of 2. 

4. Task 1 asks for data structure 1. 
- What are Task 2’s and 3’s priorities now? 
- They both have priority of 1. 

5. Task 3 finishes its critical section (Z units). 
6. Task 2 acquires data structure 2 and finishes its critical section (Y units). 
7. Task 2 finishes its critical section for data structure 1 (X units). 

‣ Total time: X + Y + Z.



69

Summary

‣ For a nested semaphore itself, the 

blocking time it may inflict is the entire 

nested locks, that is x+y. 

‣ Nested semaphore may link the 

blocking time from a semaphore that is 

not directly used by a task. In this case, 

the blocking time that can be caused by 

z.

Data 
Structure 1

Data 
Structure 2

Task 1

Task 2

Task 3

W

X

Y

Z
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Sample Problem

● Suppose that we have three tasks and there are one data structures shared by tasks τ1 and 
task τ2 and another shared by task τ1 and τ3. Task τ2’s critical section is 1 unit long while task 
τ3’s critical section is 2 units long. 

● Fill in the blocking times and determine if these 3 tasks are schedulable under PIP. (Note that 
the critical section is included in the C’s, because it is just the part of code that uses the 
shared data. )

Basic Priority Inheritance

 C T B D 

Task τ1 1 4 ?  

Task τ2 2 6 ? 1 

Task τ3 4 13 ?  
 

 

 C T B D 

Task τ1 1 4 ?  

Task τ2 2 6 ? 1 

Task τ3 4 13 ?  
 

 

Basic Priority Inheritance Priority Ceiling Protocol
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Blocking Under PIP and PCP

 C T B D 

Task τ1 1 4 3  

Task τ2 2 6 2 1 

Task τ3 4 13 0  
 

 

C T B D

Task τ1 1 4 2

Task τ2 2 6 2 1

Task τ3 4 13 0

Basic Priority Inheritance Priority Ceiling Protocol
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Learn from the Master
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Real-Time Operating System Summary
Foreground/Background Non-Preemptive Kernel Preemptive Kernel

Interrupt Latency 
(Time)

MAX(Longest instruction,   User int. 
disable) + 

Vector to ISR

MAX(Longest instruction,   User 
int. disable, Kernel int. disable) + 

Vector to ISR

MAX(Longest  instruction,   
User int. disable, Kernel int. 

disable) + Vector to ISR

Interrupt response 
(Time) Int. latency + Save CPU’s context Int. latency + Save CPU’s context

Interrupt latency + 
Save CPU’s context + 

Kernel ISR entry function

Interrupt recovery 
(Time)

Restore background’s context + Return 
from int.

Restore task’s context + 
Return from int.

Find highest priority task + 
Restore highest priority task’s 

context + Return from interrupt

Task response 
(Time) Background

Longest task + 
Find highest priority task + 

Context switch

Find highest priority task + 
Context switch

ROM size Application code Application code + 
Kernel code

Application code + 
Kernel code

RAM size Application code

Application code + 
Kernel RAM + 

SUM(Task stacks +  
MAX(ISR stack))

Application code + 
Kernel RAM + 

SUM(Task stacks +  
  MAX(ISR stack))

Services available? Application code must provide Yes Yes


