Embedded ReaI-Time




Outline

» Introduction to Embedded and Real-Time Systems
« Real-Time Operating Systems
« Real-Time Scheduling

» Schedulability Analysis and unbounded priority inversion
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What are Embedded Systems?

» Typical textbook definition:

A computer that is a component in a larger system, and is not visible as a

computer to a user of that system.
» But - An embedded system may:
e Look and function like a traditional computer,
« Have a typical computer User Interface, or

 Not contain a traditional CPU at all!
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What are Embedded Systems?

» Our (better) definition:

A programmable component or subsystem providing some intelligence functions to

the system of which it is a part.
» This can include:

« Any device, or collection of devices, that contain one or more dedicated computers,

microprocessors, or micro-controllers.
« Microprocessor chips and Programmable logic elements (FPGA, ASIC etc.)
 Device(s) may be local - Printer, automobile, etc.
» Devices may be distributed - Aircraft, ship, internet appliance.
» Key point:
« Embedded computing devices have rigidly defined operational bounds.

. . OON E W S Lab
« Not general purpose computers (PC, Unix workstation). Q Al -
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Characteristics of Embedded Systems

Properties Constraints

e No architectural link to standard
platforms.

Power/Energy constraints.

o Reliability
« Embedded systems may or may not
have Operating System (OS)

services available.

Robust

e Moderate to severe real-time

« Tolerance for bugs is much lower in constraints.
embedded systems than in desktop
computers.

« Embedded systems are cost
sensitive.
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Emergency airworthiness directive by FAA

» ISSUE DATE: August 29, 2005
» AD: 2005-18-51; FAA-2005-22252; Directorate Identifier 2005-NM-182-AD

» Report: a recent report of a significant nose-up pitch event on a Boeing Model
777-200 series airplane while climbing through 36,000 feet altitude. The flight
crew disconnected the autopilot and stabilized the airplane, during which time the
airplane climbed above 41,000 feet, decelerated to a minimum speed of 158
knots, and activated the stick shaker. Operational Program Software (OPS)
using data from faulted sensors, if not corrected, could result in anomalies of
the fly-by-wire primary flight control, autopilot, auto-throttle, pilot display, and auto-
brake systems, which could result in high pilot workload, deviation from the

intended flight path, and possible loss of control of the airplane.
S oON E W S Lab
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Emergency airworthiness directive by FAA

» ISSUE DATE: February 5, 2009

» FAA-2007-0254; Directorate Identifier 2007-NM-209-AD; Amendment 39-15795;
AD 2009-02-05

» Report: We are adopting a new airworthiness directive (AD) for certain Boeing
Model 777 airplanes. This AD requires installing software upgrades to the
airplane information management system (AIMS) located in the flight
compartment. This AD results from an investigation that revealed that detrimental
effects could occur on certain AIMS software during flight. We are issuing this AD
to prevent an unannunciated loss of cabin pressure. If an undetected loss of
pressure event were to cause an unsafe pressure in the cabin, the flight crew

could become incapacitated.
0ON E W S Lab
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THE GOAL OF EVERY
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ENGINEER [S TO
RETIRE WITHOUT
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Misconceptions for Embedded Systems

» Embedded system design is just an engineering

practice, not a science.
» Endless device driver implementation.

» Porting operating systems from ARM platform, to

Amtel platform, to Hitachi platform, etc.

» Embedded systems are tiny systems.

» Embedded systems are consumer electronics.
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Let’s Define Some Terms

» Microprocessor

An integrated circuit which forms the central processing unit for a computer or

embedded controller, but requires additional support circuitry to function
« MC68000, 80486, Pentium, K6, MicroChip PIC, etc.
» Microcontroller

A microprocessor plus additional peripheral support devices integrated into a
single package

« Peripheral support devices may include:

- Serial ports ( COM ), Parallel ( Ports ), Ethernet ports, A/D & D/A

Interval timers, watchdog timers, event counter/timers, real time clock ( RTC )

Other local processors ( DSP, numeric coprocessor, peripheral controller )

. . . O°NEWS'™
« BrainStem on PPRK is a microcontroller o P A5 A———
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Microprocessor and Microcontroller

A Microprocessor-Based Embedded System
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A “Typical” Embedded System

Minimally Requirement for an Embedded System
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Recent developments

» Moore’s Law: the complexity of integrated circuits will double every 18 months

» Process technology able to put more and more functionality on the same chip as

the cpu
» Buzz Word: System on a Chip (SOC), or System on Silicon

or
LCD Panel S-Video Camera

A A (Parallel)
MPU I_I A
Subsystem Amp Y Y Y
ARM Cortex- Parallel Calg‘;'a HS USB
A8™ Core Host
16K/16K L1$ é:‘;ﬂfe (with
POWERVR 32 Dsj.al ?utgut 3-Layer Hardware ?TSLB)
SGX™ Channel isplay Processor knage
l I Graphi Syst (1xGraphics, 2xVideo) Pipeli HS
raphics ystem Temporal Dithering ipefine usB
L2$ Accelerator DMA SDTV—QCIF Support and oTG
256K (3515 Only) Preview
}
64 . 64 32 .32 32f 32 32 64 32
I Async I
64 | 64
L3 Interconnect Network-Hierarchial, Performance, and Power Driven ‘
32 1 32 - 64 t32 |32 32
64K 112K SMS: L4 Interconnect ‘
On-Chip On-Chip SDRAM GPMC:
RAM ROM Memory General
2KB 80KB Scheduler/ Purpose . System
N " Peripherals:
Public/ Secure/ Rotation Memory " Controls
62KB 32KB T Controlier AR, O Spoed (2C, PRCM
™
Secure BooTt NAND/ (2x with Sidetone/Audio Buffer) 2xSmartReflex
SDRC: NOR 4xMcSPI, 6xGPIO, Control
SDRAM Flash, 3xHigh-Speed MMC/SDIO, Module
Memory SRAM HDQ/1 Wire,
Controller 2xMailboxes
12xGPTimers, 2xWDT, External
32K Sync Timer Peripherals
Interfaces
Emulation
External and Lo Debug: SDTI, ETM, JTAG,
Stacked Memories Coresight™ DAP

o

OONEWSLab

RARNRKE RIS RRET
15



Let’s Define Some Terms - 2

» Target system

« The embedded system under development

» Host computer

« The standard platform being used to develop the software and link to the target
system for debugging

» Cross-development

« Using host-based tools to create a code image that will execute on a different
instruction set architecture

« Example:
- Write a C program on your PC
- Compile it to run on a PowerPC 603 using a Cross-compiler

- Create a runtime image for execution in the target system OUNEWS™
get sy O BAR R E RIS RS
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The embedded life-cycle

The Project
> Pre-Prototype - Post-Prototype >

H/W Design |(Proto || Debug

Specification \ RTOS Integration -’ Sys. Test -> Mfg.
\ — /

The Integration “Loop”

I Yes

No
Yes
@ Run Test —>—> Debug

Re-design
No physical h/w
and/or s/w

<+
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Let’s Define Some Terms - 3

» Time sensitive

« If a task or operation does not complete in the specified amount of time, the

embedded device will perform below design requirements

« Example: A laser printer prints 8 pagers per minute instead of 10 ppm ( HP

trumps Lexmark once again! )
 Device continues to function.
» Time critical

- |If a task or operation does not complete in the specified amount of time, the

embedded device will fail.
« Example: Flight control system on a fly-by-wire aircraft.

e Device will not operate. X SONEWS™

BAARHERBEERRT
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Real-Time Systems
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Computation Modes

Batch Mode

Online Mode

Real-Time Mode
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SOINEWS™
BAARBRERBRERRT




Real-time Systems

" A real-time system is one in which the correctness of the
computations not only depends upon the logical

correctness of the computation but also upon the time in
which the result is produced.

W’W—*W* T — >

)

» Timing constraints can vary between different real-time systems. Therefore,

systems can fall into one of three categories:
o Soft Real-time Systems
- Hard Real-time Systems

e Firm Real-time Systems X SCNEW S
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Soft Real-time Systems

» Timing requirements are defined by using an average response time. A single

computation arriving late is not significant to the operation of the system, though

many late arrivals might be.

» Example: Airline reservation system - If a single computation is late, the system’s
response time may lag. However, the only consequence would be a frustrated

potential passenger.
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Hard Real-Time Systems
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Hard Real-time Systems

» Timing requirements are vital!
» Aresponse that’s late is incorrect and system failure results.
» Activities must be completed by a specified deadline, always.
» Deadlines can be a specific time, a time interval, or the arrival of an event.

» If a deadline is missed the task fails. This demands that the system has the

ability to predict how long computations will take in advance.

» Example: Pacemaker — If the system takes longer than expected to initiate

treatment, patient death could resuilt.
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Firm Real-time Systems

» Timing requirements are a combination of both hard and soft ones. Typically the

computation will have a shorter soft requirement and a longer hard requirement.

» Example: Ventilator — The system must ventilate a patient so many times within a

given time period. But a few second delay in the initiation of the patient’s breath

is allowed, but not more.

(@] Lab
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Real-time Systems

» The distinction between systems can obviously become
fuzzy.

e At one end of the software spectrum are non-real-time systems
where all deadlines can be missed.

e At the other end are hard real-time systems where every
deadline must be met.

Figure 1: The real-time spectrum

Non- — Soft — Hard
real time

teal time ml time
Computer User Internet Cruise Tele- Flight Eledronlc
simulation interface video control communications  control engine
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Misconceptions of real-time systems

» Real-time computing is equivalent to fast computing.
» Real-time programming is assembly coding.
» “Real-time” is performance engineering.

» Real-time systems function in a static environment (or closed system).
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Real-Time Systems (RTS)

Distributed

Centralized T N Proprietary
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Milestones of Embedded Systems
(Reference)
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1940 ~ 1960
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» 1945: First computer bug found by Grace rg;f_
Hopper.

» 1947 The first practical point-contact
transistor at Bell Labs by William Shockley,

John Bardeen and Walter Brattain

» 1950: Assembly languages were first

H
; enable the timer for tics

developed.

1d a,0

outO trdr0l ; set timer count lo=0

out0 rldr0l ; set reload

1d a,trrtic

out0 tmdrOh ; set reload and count=1e00=60 tics/sec
out0 rldrOh

1d a,11h

out0 tcr ; enable timer 0 + interrupts

ret
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1960 ~ 1980

»

1963: AGC, the first embedded systems, was
installed on Appollo 7 through 17.

« Autonetics D-17 guidance computer for the

Minuteman missile

1971: Intel releases first microprocessor, the 4004, a
4-bit central processing unit.

1972: Dennis Ritchie developed C, the most used
programming language for embedded systems.

1973: C. L. Liu and James W. Layland published the
most fundamental scheduling theory for embedded
real-time systems: “Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment.”

1976: Apple | computer was released.

Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment

C. L. LIU

Project MAC, Massachusetts Institute of Technology

AND

JAMES W. LAYLAND

Jet Propulsion Laboratory, California Institute of Technology

apstRact. The problem of multiprogram scheduling on a single processor is studied from the
viewpoint of the charactenstics peculiar to the program functions that need guaranteed ser-
vice. It is shown that an optimum fixed priority scheduler possesses an upper bound to proces-
sor utilization which may be as low as 70 percent for large task sets. It is also shown that full

processor utilization can be achieved by dynamically assigning priorities on the basis of their
current deadlines. A combination of these i is slso discussed.

KEY WORDS AND PHRASES:
d i ing, priority processor ion, deadline dri

R cATEGORIES: 3.80, 3.82, 3.83, 4.32

1. Introduction

The use of computers for control and monitoring of industrial processes has ex-
panded greatly in recent years, and will probably expand even more dramatically
in the near future. Often, the computer used in such an application is shared be-
tween a certain number of time-critical control and monitor functions and a non-
time-critical batch processing job stream. In other installations, however, no
non-time-critical jobs exist, and efficient use of the computer can only be achieved
by a careful scheduling of the time-critical control and monitor functions themselves.
This latter group might be termed “pure process control” and provides the back-
ground for the bi i duling analyses in this paper. Two

Copyright © 1973, iation for Computing Machinery, Inc. General ission to re-
publish, but not for profit, all or part of this material is granted, provided that reference is
made to this publication, to its date of issue, and to the fact that reprinting privileges were
granted by permission of the iation for Computing Machinery.

This paper presents the results of one phase of rescarch carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under Contract No. NAS-7-100, sponsored by the
National Aeronautics and Space Administration.

Authors” present addresses: C. L. Liu, Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL 61801; James W. Layland, Jet Propulsion Laboratory,
California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91103.

Journal of the Association for Computing Machwmery, Vol. 20, No. 1, January 1973, pp. 45-61.




1980 ~ 2000

» 1980: Hunter&Ready (James Ready and Colin Hunter's
company) release first commercial operating system for
embedded systems, VRTX (Versatile Real-Time Executive).

» 1980s: WindRiver acquires rights to resell VRTX with an
extension named VxWorks.

» 1980: Intel introduces 8051 (Harvard architecture, single ch ~ 7**

) * Helper class that returns a random number. ’
micro-controller). =/ ‘
private static int getRandom(int mod) {
» 1985: Acorn Computers Ltd. makes samples of ARM1 BAndom Fand = new Randomi) §
return Math.abks(rand.nextInt()) % mod + 1;

architecture available. ARM2 ships in 1986. w__,.__,_“w .

» 1985: Joint Test Action Group (JTAG) forms

» 1989: First Embedded Systems Conference is held at the Sir
Francis Drake hotel in San Francisco.

» 1995: Sun release JAVA.

» 1996: Microsoft releases first version of Windows Embedded CE.

» 1997: UML version 1.0 proposed to the OMG.
B
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2000 ~ 2010

» 2001: First Tele-surgery machine

» 2004: Sony and IBM begin producing cell
computer chips, a supercomputer on a chij

was on your palm.

» 2004: First urban challenge and no

participant finished the challenge.

» 2005:IBM, Intel and AMD released their first

multi-core processors.

2007: Third urban challenge

, New York &
European Institute of Telesurgery,
Strasbourg

=14,000 km

= 200 msec; video and hi-
speed fibre-optic link

: Johns Hopkins University,
Baltimore & Rome Policlinico Casilino
University

35
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Participants for 2007 Challenges

Technical Abilities:

» Real-time by-wire actuator

control
» Mission and path planning

» Perception and multiple

sensor fusion
» Vehicle behavior
» Situational awareness

» System Engineering

for pictures and texts
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Irends for Embedded Systems Design

Cyber-Physical
dystems




Summary for Embedded System Design

Embedded system design is a science for understanding
e interaction among hardware and software components,
e resource management,
e performance predicability, and

e systems integration.

so as to design robust and cost eftfective embedded systems.
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Real-Time Operating Systems
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What is a Real-Time Operating System?

» What is a real-time operating system?

« An operating system enforcing timing constraints, Lynx, pSOS, VxWorks,
eCQOS, uCLinux, LynxOS, RTLinux, KURT,RTAI, uC/OS-II, ...

(@) Lab
JOFNEWS
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RTOS at a Glance

» AMX, KwikNet, KwikPeg (#om kapak products Ltd.)
14 C EXEC UTIVE (from JMI Software Systems, Inc.)
» CMX-RTX (from CMX Systems, Inc.)

» DeltaOS (from CoreTek Systems, Inc.)

¢ PDOS (from Eyring Corporation)

¢ PSX (from JMI Software Systems, Inc.)

« QNX Neutrino (om anx software Systems Ltd.)
¢ QNX4 (from QNX Software Systems Ltd.)

» eCos  Inc. .
(from Rea et Ine) « REDICE-Linux (om repsonic, inc.)

» embOS (from SEGGER Microcontroller Systeme GmbH) . RTLi nux (from Finite State Machine Labs, Inc.)

14 eRTOS (from JK microsystems, Inc.) R RTX 5.0 (from Venturcom)
» ETS (from VenturCom)

* Portos (fom Ravih chrabie)
> EYRX (from Eyring Corporation)
14 INTEG RITY (from Green Hills Software, Inc.)

» INtime® real time extension to Windows® (rom renasys

°* SIMX (Micro Digital, Inc.)
° SuperTaSk! (from US Software)

Corporation) - ThreadX (from Express Logic, Inc.)
» IRIX (rom sa) * Treck MicroC/OS-Il (from Elmic Systems USA, Inc.)
» |RMX (from TenAsys Corporation) ° TronTask! (from S Software)

» Jbed . inc. .
(rom esmertec, ine.) - TTPos: (from TTTech Computertechnik AG)

- VxWorks 5.4 (from Wind River)
> MQX (from Precise Software Technologies Inc) . SCO RE, D ACS an d T AD S (from DDC-I)

» Nucleus PLUS (AcceleratedTechnology, ESD Mentor Graphics) .
e S - Nimble - the SoC RTOS (from Eddy Solutions)
» On Time RTOS-32 (from On Time Informatik GmbH)

4 LynXOS (from LynuxWorks)

*Nucleus (from Accelerated Technology)
« Fusion RTOS (#ompspos, inc,)
- FreeRTOS (from Richard Barry)

» OS'g (from Microware Systems Corporation)

» OSE (from OSE Systems )

(@) Lab
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Systems Issues

» In RTS, the OS and AP are very tightly coupled, than time-sharing systems.

« shared memory, special buses (instruction, data, event, memory, control,

invalidate, ...).

» ARTOS must response to internal and external events deterministically.

» Low-priority tasks may wait for high-priority task or events indefinitely.

» System architecture needs to provide high computational speed, high-speed

interrupt handling, and high I/O throughput, + fault-tolerance.

(@) Lab
JOFNEWS
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Real-Time Scheduling
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Real-Time scheduling algorithms

» We use real-time scheduling algorithms every day.
e Dynamic priority scheduling algorithms
- How do you plan your days to do the homework and exams?
- Earliest Deadline First algorithm [Liu and Layland 1973]
« Static priority scheduling algorithms
- Do you prioritize your works?
- Rate-Monotonic algorithm [Liu and Layland 1973]
» The algorithms should schedule the tasks to meeting the requirements.

(@] Lab
SOINEWS
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Introduction to Real-Time Process Scheduling

» Q: Many theories and algorithms in real-time process scheduling seem to have
simplified assumptions without direct solutions to engineers’ problems. Why

should we know them?
» A
« Provide insight in choosing a good system design and scheduling algorithm.

« Avoid poor or erroneous choices.

(@) Lab
JOFNEWS
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Time

\4

Independent Process Scheduling
(Liu & Layland, 1973, etc.)

Process Scheduling with
Non-Preemptable Resources

Job Shop Scheduling

Multiprocessor Process Scheduling
(Dhall, 1972-, etc.)

Sporadic Process Scheduling

(Mok, 1983, Sha, Rajkumar, 1986, Baker, 1991, etc.) (Sprunt, 1989, etc.)

Non-preemptable Scheduling
(Baruah, 1990-, etc.)

Process Scheduling with End-to-End Delays
(Stankovic, Gerber, Lin, etc, since ?.)

Process Scheduling with Multiple Resources

Process Scheduling with
Probabilistic Guarantee
(Liu, Lehoczky, etc, since 1995.)

Process Scheduling with
Realistic Task Characteristics
(Liu, Mok, etc, since 1996.)

Rate-Based Scheduling
(Buttazzo, Liu, Brauah, Kuo, etc, since 1995.)

46



Uni-processor Scheduling

» Fixed-Priority vs. Dynamic-Priority Scheduling
» Rate-Monotonic Scheduling Algorithm

» Earliest Deadline First Scheduling

(@) Lab
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Process Model

» Periodic process

« each periodic process arrives at a regular frequency — a special case of

demand.
e r:ready time, d: relative deadline, p: period, c: worst case computation time.
« For example, maintaining a display
» Sporadic process
« An aperiodic process with bounded inter-arrival time p.
« For example, turning on a light
» Other requirements and issues:

e process synchronization including precedence and critical sections, process

value, etc.
S 0ON E W SLab
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Performance Metrics

» Metrics for hard real-time processes:
« Schedulability, etc.
» Metrics for soft real-time processes:

e Miss ratio

Accumulated value
 Response time, etc.
» Other metrics:
« Optimality, overload handling, mode-change handling, stability, jitter, etc.

« Combinations of metrics.

(@] Lab
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Definitions

» Preemptive scheduling: allows process preemptions. (vs. nonpreemptive

scheduling)

» Online scheduling: allocates resources for processes depending on the current

workload. (vs. offline scheduling)

» Static scheduling: operates on a fixed set of processes and produces a single

schedule that is fixed at all time. (vs. dynamic scheduling)

» Firm real-time process: will be killed after it misses its deadline. (vs. hard and soft

real-time)

» Fixed-priority scheduling: in which the priority of each process is fixed for any

instantiation. (vs. dynamic-priority scheduling)

(@] Lab
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Rate Monotonic Scheduling Algorithm

» Assumptions:

« all periodic fixed-priority processes

« relative deadline = period

« independent process - no non-preemptable resources
» Rate Monotonic (RM) Scheduling Algorithm

« RM priority assignment: priority ~ 1/period.

« preemptive priority-driven scheduling.

» Example: T1 (p1=4, c1=2) and T2 (p2=5, c2=1)

S b .

|
0 1 2 3 4 5 6 7 8 ©FNEWS™

BEAARHERBEERRE

>

51




Rate Monotonic Scheduling Algorithm

» Critical Instant
« An instant at which a request of the process have the largest completion/response time.

« An instance at which the process is requested simultaneously with requests of all

higher priority processes.
» Usages
« Worst-case analysis
« Fully utilization of the processor power

« Example: T1 (p1=4, c1=2) and T2 (p2=5, c2=1)

S b .

|
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Rate-Monotonic Analysis

» Schedulability Test:
« A sufficient but not necessary condition.

« Achievable utilization factor aof a scheduling policy P: any process set with
total utilization factor E%no more than a is schedulable.
. Given n processes, o =n(2"" =1)
»  Stability:

« Let processes be sorted in RM order. The ith process is schedulable if
i

C. .

E —L <i2"" -1
- D

« An optimal fixed priority sc{'nedul“llng algorithm

(& Lab
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Earliest Deadline First Scheduling Algorithm

» Assumptions (similar to RM):

 all periodic dynamic-priority processes

« relative deadline = period

« Independent process - no non-preemptable resources
» Earliest Deadline First (EDF) Scheduling Algorithm:

« EDF priority assignment: priority ~ absolute deadline. i.e., arrival time t
+ relative deadline d.

e preemptive priority-driven scheduling
» Example: T.(c,=1, p,=2), T,(c,=2, p,=7)

B N

o 1 2 3 4 5 6 7 8
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Earliest Deadline First (EDF) Scheduling Algorithm

» Schedulability Test:
« A sufficient and necessary condition
e Any process set is schedulable by EDF iff
E S 1
P
» EDF is optimal for any independent process scheduling algorithms.

» However, its implementation has considerable overheads on OS’s with a fixed-

priority scheduler and is bad for (transiently) overloaded systems.
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Priority Inversion and Schedulability Analysis
(Optional)

(& Lab
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What Happened on Mars?

» Pathfinder was launched on Dec. 4 1996 and landed on Mars on July 4, 1997.

» All of sudden, the pathfinder kept reset itself and doing nothing.
0ON E W S Lab
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What happened on Mars?

» Pathfinder contained an "information bus", which you can think of as a
shared memory area used for passing information between different

components of the spacecraft.
» A high priority task was blocked for unexpected long time interval.

» After some time had passed, a watchdog timer would go off, notice that
the data bus task had not been executed for some time, conclude that

something had gone drastically wrong, and initiate a total system reset.

» This scenario is a classic case of priority inversion.

(@) Lab
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Unbounded Priority Inversion

Legend .
S Locked NN\\

Executing
Blocked B

. {...P(S)..V(S)..}

t:{...P(S)..V(S)...

S

—

O

time
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Basic Priority Inheritance Protocol - 1

Legend .
S Locked NN\NN

Executing
Blocked B

Y \

S
B yyo.

T4: IS INDIRECTLY BLOCKED by T,
since T, inherits the priority of T,

—

77 7
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Chained Blocking

/Legend ) t,:{...P(S1)...P(82)...V(S2)...V(S1)...}
S2 Locked _
S1 Locked NI ,:{...P(S1)...V(S1)...}
Executing [ | t3:{...P(S2)...V(S2)...}
\ Blocked B_ )
S1 Locked

Attempts to lock S1 l S1 Unlocked
\ 4
o (h) m N\

S1S1 Locked S1 Unlocked

173(’) T
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Deadlock Under BPIP

/Legend A
S1 Locked YN
S2 Locked
Executing
\Blocked B J
S1 Locked

T, (h)

S2 Locked

t:{...P(S1)...P(S2)
©,{...P(S2)...P(S1)

Attempts to lock S2
_@ B

L V(S2)..V(S1)..}
V(S1)..V(S2)..}

l Attempts to lock S1
B

T,(l)

time
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Priority Ceiling Protocol

- A priority ceiling is assigned to each semaphore, which is equal to the highest

priority task that may use this semaphore.

- Atask can lock a semaphore if and only if its priority is higher than the priority
ceilings of all semaphores ALREADY LOCKED by other tasks.

If a task is blocked by lower priority tasks, the lower priority task inherits its
priority.

Under priority ceiling protocol, a task can be blocked by lower priority tasks at
most once no matter how many semaphores they share. In addition, tasks

cannot be deadlocked.

Under priority inheritance protocol, tasks could be deadlocked and chained
blocking is a fact of life. But a task is blocked at most by n lower priority tasks

sharing resources with it or with higher priority tasks, when there is no deadlock.
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SOINEWS

RANRRERREEERT
D 63



Deadlock Avoidance: Using PCP

4 N

Legend

S7 Locked N\ t{..P(S1)...P(S2)...V(S2)...V(S1)...}
S2 Locked N

Exec‘i,";,-,fg |—7 ©,4...P(S2)...P(S1)..V(S1)...V(S2)...}
\Blocked B J

Attempts to lock S1 Locks S1

but can’t. why? Unlocks S1
\ 4 B Y
AN
T,(h)

If S1 were locked, deadlock would follow.
Locks S1 Unlocks S1

_lll_

() —
tim
Note: Task T, can still lock S1 since it owns the lock, S1 is ndt
locked by OTHER tasks SONEW S
S BAR A ER RIS EE
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Blocked at Most Once (PCP)

/Legend

S1 Locked N\
S2 Locked
Executing [ |

NN

\ Blocked B J
Attempts to lock S1
but can’t. Why?
S1 Locked
Attempts to lock S1
\ 4
B
T,(h)

T5())

Attempts to lock S1

B

T4 inherit t,’s priority

N

T,{...P(S1)...P(S2)...V(S2)..V(S1)...
T,{...P(S1)..V(S1)...
T,{...P(S2)..V(S2)...}

S1 Unlocked

Attempts to lock S1, but BLOé](éBC }9 % ]

Wh

\

4

S1 Unlocked

T4 inherit t,’s

priority

tim
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Sample Problem: Worst-Case Blocking Times
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Sample Problem: Worst-Case Blocking Times

» Un-nested semaphores

« First, examine task 3. Recall that blocking is when a lower priority task
delays the execution of a higher priority task. Since task 3 has the
lowest priority, its blocking time will be 0.

« Fortask 2, it could only be blocked by task 3. Thus, its B is equal to Z.

- Similarly, task 1's B is equal to X. Because semaphores cannot be
nested, data structure 2 will not affect task 1.

» Nested semaphores
e Task 3 and 2 are the same as the un-nested case.
- Fortask 1, imagine the worst case sequence of events.
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Sample Problem: Worst-Case Blocking Times

Nested semaphores

The worst sequence for Task 1:

—

Task 3 acquires data structure 2.
2.  Task 2 acquires data structure 1.
3.  Task 2 asks for data structure 2 (but cannot get it).
en  What is Task 3’s priority now?
&m0 Task 3 has priority of 2.
4. Task 1 asks for data structure 1.
st What are Task 2’s and 3'’s priorities now?
et They both have priority of 1.
5.  Task 3 finishes its critical section (Z units).
6. Task 2 acquires data structure 2 and finishes its critical section (Y units).

7. Task 2 finishes its critical section for data structure 1 (X units).

Total time: X +Y + Z. =
SOUNEWS™

BAARHERBEERRT
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Summary

» For a nested semaphore itself, the
blocking time it may inflict is the entire

nested locks, that is x+y.

» Nested semaphore may link the

blocking time from a semaphore that is

not directly used by a task. In this case, - /

the blocking time that can be caused by

Z.

O Lab
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Sample Problem

« Suppose that we have three tasks and there are one data structures shared by tasks t, and
task t, and another shared by task t, and t;. Task t,'s critical section is 1 unit long while task
t4's critical section is 2 units long.

 Fill in the blocking times and determine if these 3 tasks are schedulable under PIP. (Note that
the critical section is included in the C’s, because it is just the part of code that uses the
shared data. )

Basic Priority Inheritance Priority Ceiling Protocol
C| T |B|D C| T |B|D
Task™ | 1| 4 | ? Taskt1 | 1| 4 | ?
Task™2 | 2 | 6 | ? | 1 Taskt2 |2 | 6 | ? | 1
Task®™3 | 4 | 13 | ? Taskt3 | 4 | 13 | ?
L -
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Blocking Under PIP and PCP

Basic Priority Inheritance Priority Ceiling Protocol
C/ T|B|D C| T |B|D
Task™ | 1| 4 |3 Task™ | 1| 4 | 2
Task™2 |2 | 6 | 2 | 1 Task™2 | 2 | 6 | 2| 1
Task®™3 |4 |13 |0 Task®™3 |4 |13 |0

OONEWSLab
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Real-Time Operating System Summary

Foreground/Background

Non-Preemptive Kernel

Preemptive Kernel

Interrupt Latency
(Time)

MAX(Longest instruction, User int.
disable) +
Vector to ISR

MAX(Longest instruction, User
int. disable, Kernel int. disable) +
Vector to ISR

MAX(Longest instruction,
User int. disable, Kernel int.
disable) + Vector to ISR

Interrupt response

(Time)

Int. latency + Save CPU’s context

Int. latency + Save CPU’s context

Interrupt latency +
Save CPU’s context +
Kernel ISR entry function

Interrupt recovery

Restore background’s context + Return

Restore task’s context +

Find highest priority task +
Restore highest priority task’s

(Time) aiubing G context + Return from interrupt
Longest task + : : .
dIES response Background Find highest priority task + e e priority task £
(Time) C . Context switch
ontext switch
: S Application code + Application code +
ROM size Application code Kernel code Kernel code
Application code + Application code +
: . Kernel RAM + Kernel RAM +
RAM size Application code SUM(Task stacks + SUM(Task stacks +
MAX(ISR stack)) MAX(ISR stack))
Services available? Application code must provide Yes Yes
Oy VL UAN)
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