
Operating Systems for Self-
Driving Cars and Robots

‣Chi-Sheng SHIH

‣National Taiwan University

2

Agenda

‣ Requirements for message exchange for self-driving car
and robots

‣ Robot Operating Systems (ROS)

‣ Architecture and Philosophy

‣ Development Roadmap

‣ From ROS1 to ROS2

‣ (Optional) Data Distribution Service (DDS)

Requirements of Message
Exchange for Vehicles and
Robots

4

Message Exchange Intra-Vehicle

‣ One modern vehicle consists of 70 - 100 processing units,
which need to exchange messages between them.

‣ The communications have diverse requirements:

‣ Power-assisted mirrors/window/door/seat control: low
data rate, can tolerate short loss and delay.

‣ Park assistive radar: low data rate, can tolerate short loss

‣ Throttle/steering/brake control: low data rate, cannot
tolerate loss

‣ Lidar/Camera data: high data rate, can tolerate short loss
and delay.

5

Data Exchange in Real-Time Systems

Subsystems in self-driving cars require the real-time
information from other subsystems.

‣ Late information will lead to wrong/out-of-date decision.

‣ Real-time is not equal to fast but refers to arrive/
complete the task, which is the transmission here, no later
than a predictable time interval.

Sense

Compute

Control

Collect Vehicle state Commands

Change Vehicle state

6

Requirements for Real-time
Communication

‣ Predictable delay: the delay between message sending and
deceiving is predictable or bounded by a pre-determined
latency.

‣ Prioritized messaging: the messages are transmitted
according to their priority levels and higher priority
messages should not be blocked by low priorities
messages.

‣ Scalability: message transmission delay are not affected by
the number of computing nodes, including senders,
receivers and others, in the systems.

7

Vehicle Bus

Messaging Node Control Physical Cost Applications Data rate

LIN
(Local

Interconnect
Network)

Deterministric,
static message

schedule
Master/Slave 1-wire Low

Displays,
lighting, alarm
systems, A/C,
Seat & Mirror,

power windows

10 Kb/s

CAN/TTCAN
(Control Area

Network)

Event-triggered
messages/Time

trigger
messages

Autonomous 2-wire Medium/High
Engine,

transmission,
braking,
steering,

suspension,
assistance,
safety, and
diagnostics

1 Mbis/s under
40m/10Mb/s

FlexRay
Event/Time
triggered
messages

Autonomous,
Master/Slave

2 Channel, 2-
wire High 10 Mb/s

Ethernet
Non-

deterministic,
dynamic
message

Autonomous CAT Low
E-mirror, music,

multimedia,
camera, lidar

data

100 Mb/s, 1Gb/
s, 10Gb/s

8

Vehicle Bus

9

Challenges for Adopting Real-Time
Communication protocols
‣ Resource reservation:

‣ Network transmissions are not preemptive.

‣ Resources must be reserved in advance to assure that high
priority messages have sufficient bandwidth to transmit.

‣ Offline Analysis:

‣ The transmission workloads must be off-line analyzed to prevent
undetermined blocking time.

‣ Sporadic messages are difficult to guarantee their quality of
services.

‣ Flexibility:

‣ Not trivial to balance flexibility and guaranteed quality of services.

‣ After-market sub-systems have limited business.

Robot Operating System

ROS

11

WHAT IS ROS?

‣ ROS is an open-source robot operating system

‣ A set of software libraries and tools that help you build robot
applications that work across a wide variety of robotic platforms

‣ Originally developed in 2007 at the Stanford Artificial Intelligence
Laboratory and development continued at Willow Garage

‣ Since 2013 managed by OSRF (Open Source Robotics
Foundation)

‣ Today used by many robots, universities and companies

‣ De facto standard for robot programming
4

12

What is ROS?

ROS = Robot Operating System

▪ Process
management

▪ Inter-process

communication

▪ Device drivers

▪ Simulation

▪ Visualization

▪ Graphical user interface

▪ Data logging

▪ Control

▪ Planning

▪ Perception

▪ Mapping

▪ Manipulation

▪ Package organization

▪ Software distribution

▪ Documentation

▪ Tutorials

http://www.ros.org

13

ROS MAIN FEATURES

ROS has two "sides"

‣ The operating system side, which provides standard operating

system services such as:

‣ hardware abstraction

‣ low-level device control

‣ implementation of commonly used functionality

‣ message-passing between processes

‣ package management

‣ A suite of user contributed packages that implement common
robot functionality such as SLAM, planning, perception, vision,
manipulation, etc.

Intel-NTU Connected Context Computing Center

14

ROS MAIN FEATURES

15

ROS Philosophy

▪ Peer to peer

Individual programs communicate over defined API (ROS messages,
services, etc.).

▪ Distributed

Programs can be run on multiple computers and communicate over the
network.

▪ Multi-lingual

ROS modules can be written in any language for which a client library
exists (C++, Python, MATLAB, Java, etc.).

▪ Light-weight

Stand-alone libraries are wrapped around with a thin ROS layer.

▪ Free and open-source

Most ROS software is open-source and free to use.

16

ROS Overview (ROS1)

Perception

Decision
MakingVisualizer

Object/Location

Commands

Object/LocationCommandsObject/Location

17

ROS Overview (ROS1)

‘roscore’ is the
message

marshaling server.
Perception

Decision
MakingVisualizer

rescore

Object/Location

Commands

Object/Location

CommandsObject/Location

Nodes

Topics

18

ROS CORE CONCEPTS

‣Nodes

‣Messages and Topics

‣Services

‣Actions

‣ROS Master

‣Parameters

‣Packages and Stacks

19

ROS MASTER
‣ Provides connection information to nodes

so that they can transmit messages to
each other

• When activated, every node connects to
a specified master to register details of
the message streams they publish,
services and actions that they provide,
and streams, services, and action to
which that they subscribe.

• When a new node appears, the master
provides it with the information that it
needs to form a direct peer-to-peer TCP-
based connection with other nodes
publishing and subscribing to the same
message topics and services.

Intel-NTU Connected Context Computing Center

20

ROS MASTER

21

ROS MASTER

▪We have two nodes: a Camera node and an
Image Viewer node

▪Typically the camera node would start first

notifying the master that it wants to publish
images on the topic "images":

Master

Camera Image
Viewer

Advertise (images)

22

ROS MASTER

▪Image Viewer wants to subscribe to the topic
"images" to get and display images obtained with the
camera:

Master

Camera Image
Viewer

Subscribe (images)

image

23

ROS MASTER

▪Now that the topic "images" has both a publisher and
a subscriber, the master node notifies Camera and 	
Image Viewer about each others existence, so that
they can start transferring images to one another:

Master

Camera Image
Viewer

image

24

ROS Master

▪ Manages the communication between nodes
(processes)

▪ Every node registers at startup with the master

Start a master
with> roscore

ROS Master

More info

http://wiki.ros.org/Master

|

http://wiki.ros.org/Master

25

ROS Nodes
‣ Single-purposed executable programs

• e.g. sensor driver(s), actuator driver(s), map building,
planner, UI, etc.

‣ Individually compiled, executed, and managed

‣ Nodes are written using a ROS client library

• roscpp – C++ client library

• rospy – python client library

‣ Nodes can publish to or subscribe from a Topic

‣ Nodes can also provide or use a Service or an Action

Intel-NTU Connected Context Computing Center

26

ROS NODES

Intel-NTU Connected Context Computing Center

27

ROS NODES

28

ROS TOPICS AND ROS MESSAGES

▪Topic: named stream of messages with a defined type

oData from a range-finder might be sent on a topic called

scan, with a message of type LaserScan

▪Nodes communicate with each other by

publishing messages to topics

▪Publish/Subscribe model: 1-

to-N broadcasting

▪Messages: Strictly-typed data structures for inter-node
communication

ogeometry_msgs/Twist is used to express

velocity commands: Vector3 linear
Vector3 angular

29

ROS TOPICS AND ROS MESSAGES

Vector3 linear
Vector3 angular

float64 x
float64 y
float64 z

geometry_msgs/Twist

Vector3

HMI: Human Machine Interface

30

ROS Master (Recap)

▪ Manages the communication between nodes
(processes)

▪ Every node registers at startup with the master

Start a master
with> roscore

ROS Master

More info

http://wiki.ros.org/Master

|

http://wiki.ros.org/Master

ROS Nodes
▪ Single-purpose, executable program

▪ Individually compiled, executed, and managed

▪ Organized in packages

> rosrun package_name node_name
Run a node with

ROS
Master

Node 1 Node 2

> rosnode list
See active nodes with

> rosnode info node_name
Retrieve information about a node with

Registration	 Registration

32

ROS Topics

▪ Nodes communicate over topics

▪ Nodes can publish or subscribe to a topic

▪ Typically, 1 publisher and n subscribers

▪ Topic is a name for a stream of messages

ROS
Master

Node 1

Publisher

Node 2

Subscriber

Registration

> rostopic list
List active topics with

> rostopic echo /topic
Subscribe and print the contents of a topic with

> rostopic info /topic
Show information about a topic with

topic
Publish

Subscribe

Subscribe

Messages

Registration

Informs about connection

33

ROS SERVICES
▪Synchronous inter-node transactions

(blocking RPC): ask for something and wait for it

▪Service/Client model: 1-to-1 request-response

▪Service roles:

o carry out remote computation

o trigger functionality / behavior

omap_server/static_map – retrieves the

current grid map used for navigation

34

ROS MASTER

▪The scenario can be made even more modular by
adding an Image processing node, from which the
Image viewer gets its data.

35

PARAMETER SERVER

▪A shared, multi-variate dictionary that is accessible via
network APIs

▪Best used for static, non-binary data such as configuration

parameters

▪Runs inside the ROS master

36

ROS BAGS

▪Bags are the primary mechanism in ROS for

data logging

▪Bags subscribe to one or more ROS topics, and store
the serialized message data in a file as it is received.

▪Bag files can also be played back in ROS to the
same topics they were recorded from, or even
remapped to new topics.

http://wiki.ros.org/Topics

37

ROS SUPPORTED PLATFORMS
▪ROS is currently supported only on Ubuntu

o other variants such as Windows, Mac OS X, and Android
are considered experimental

▪ROS Kinetic Kame runs on Ubuntu 16.04

(Xenial) and will support Ubuntu 15.10 (Willy)

▪ROS Melodic Morenia runs on Ubuntu 18.04

(Bionic) and will support Ubuntu 17.10 (Artful)

38

ROS ENVIRONMENT

▪ROS is fully integrated in the Linux environment: the
rosbash package contains useful bash functions and
adds tab-completion to a large number of ROS utilities

▪After installing, ROS, setup.*sh files in '/opt/ros/<distro>/',
need to be sourced to start rosbash:

▪This command needs to be run on every new shell to
have access to the ros commands: an easy way to do it is
to add the line to the bash startup file (~/.bashrc)

$ source /opt/ros/indigo/setup.bash

39

ROS PACKAGES

▪Software in ROS is organized in packages.

▪A package contains one or more nodes,

documentation, and provides a ROS interface

▪Most of ROS packages are hosted in GitHub

Intel-NTU Connected Context Computing Center

40

ROS PACKAGE SYSTEM

41

ROS Messages

▪ Data structure defining the type of a topic

▪ Comprised of a nested structure of

integers, floats, booleans, strings etc.
and arrays of objects

▪ Defined in *.msg files

> rostopic type /topic
See the type of a topic

ROS
Master

Node 1

Publisher

Node 2

Subscriber

Registration	 Registration

> rostopic pub /topic type data
Publish a message to a topic Publish

Subscribe

Subscribe

*.msg Message definition
int number

double width string
description etc.

topic

42

ROS Messages

Pose Stamped Example
geometry_msgs/Point.msg

std_msgs/Header header
uint32 seq
time stamp

string frame_id

geometry_msgs/Pose pose
geometry_msgs/Point position

float64 x
float64 y
float64 zgeometry_msgs/Quaternion orientation

float64 x
float64 y
float64 z
float64 w

geometry_msgs/PoseStamped.msg

std_msgs/Header header
uint32 seq

time stamp string
frame_id

uint32 height
uint32 width string
encoding uint8
is_bigendian uint32
step uint8[] data

sensor_msgs/Image.msg

float64 x
float64 y
float64 z

http://docs.ros.org/api/geometry_msgs/html/msg/Point.html
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html

From ROS1 to ROS2

44

Comparing ROS 1 and ROS 2

Middleware
Layer

Application
Layer

OS Layer
Linux Linux/Windows/Mac

Application
Node Node Node

Application
Node Node

Client Library

Master

Abstract DDS Layer
TCPROS/UDPROS

Client Library

NodeLet
API

DDS InterProcess
API

ROS1

ROS2

45

Global Data Space
‣ Global data space is defined as a distributed discovery

and storage services:

‣ No single point failure

‣ Publishers and subscribers are dynamically discovered.

‣ One can view it as a distributed storage system, which can
be implemented as

‣ distributed cache,

‣ distributed buffer,

‣ distributed file system, or

‣ distributed database system

46

ROS 1 Message using topics

ROS Master

Parameter Server

Talker 1

(Publisher)

Listener
1

(Subscriber
)

Registration Registration

P2P
Messaging

Node
Node

(TCP/IP)Talker 2

(Publisher)

Listener
2

(Subscriber
)

47

ROS 2 Message using topics

Talker 1

(Publisher)

Listener 1

(Subscriber)

Registration/write Registration/Read
Node Node

Talker 2

(Publisher)

Listener 2

(Subscriber)

Distributed Global
DataSpace

Use-case / basic requirements

! Teams of multiple robots

! Small embedded platforms

! Real-time systems

! Non-ideal networks

! Production environments

48

Current Status of ROS 2

History

! Development started in 2014

! First stable release in December 2017

! First LTS release planned in May 2019

May '19December '17	 July '18	
December '18

The “ROS 2 Logos” by the
OSRF are licensed under
CC BY 3.0

Nov '19

LTS: Long Term Support, which is 5 years.

49

ROS 2 Supported Platforms
‣ ROS 2 Eloquent Elusor

‣ Eloquent Elusor is primarily supported on the following platforms:

‣ Tier 1 platforms:

‣ Ubuntu 18.04 (Bionic): amd64 and arm64

‣ Mac macOS 10.14 (Mojave)

‣ Windows 10 (Visual Studio 2019)

‣ Tier 2 platforms:

‣ Ubuntu 18.04 (Bionic): arm32

‣ Tier 3 platforms:

‣ Debian Stretch (9): amd64, arm64 and arm32

‣ OpenEmbedded Thud (2.6) / webOS OSE: arm32 and x86

Tier 1 platforms are subjected to our unit test suite and other testing tools on a frequent basis including continuous
integration jobs, nightly jobs, packaging jobs, and performance testing. Errors or bugs discovered in these
platforms are prioritized for correction by the development team.

Tier 2 platforms are subject to periodic CI testing which runs both builds and tests with publicly accessible results.
The CI is expected to be run at least within a week of relevant changes for the current state of the ROS distribution.

Tier 3 platforms are those for which community reports indicate that the release is functional. The development
team does not run the unit test suite or perform any other tests on platforms in Tier 3.

Data Distribution Service
(DDS)

51

The Need for Data Distribution

‣ Data Centric Architectures
are emerging as a key
trend for next generation
military and civil system of
systems

‣ Efficient, scalable and
QoS- enabled data
dissemination is an
enabling technology for
Network Centric Systems

Adapted from “The Future of AWACS”,

by LtCol Joe Chapa

Joint Forces

Global Info

Grid

Joint Forces
Global Info Grid

The Right Information => To the Right People => At the Right Time

52

The OMG DDS Standard
‣ Introduced in 2004 to address the Data distribution challenges

typical of Defense and Aerospace Applications

‣ Key requirement for the standard were high performance and
scalability from embedded to ultra-large-scale deployments

‣ Today recommended by key administration worldwide and
widely	 adopted well beyond Aerospace and Defense in
domains, such as, Automated Trading, Simulations, SCADA,
Telemetry, etc.

53

How Does it Work?

54

How Does it Work?
‣ DDS is based around the concept of a fully	

distributed Global Data Space (GDS)

‣ Applications can autonomously and asynchronously
read/written data in the GDS

DDS

Global Data Space

Brokers

‣ Publishers and Subscribers can join and leave the GDS
at any time.

55

How Does it Work?

Brokers

DDS

Global Data Space

Publisher

Publisher

Publisher

Subscribe

Subscribe

Subscribe

‣ Publishers and Subscribers express their intent to
produce/consume specific type of data, e.g., Topics.

56

How Does it Work?

Brokers

DDS

Global Data Space

Publisher

Publisher

Publisher

Subscribe

Subscribe

Subscribe

‣ Subscriptions are matched by taking into account
topics (name, data type and QoS).

57

How Does it Work?

Brokers

DDS

Global Data Space

Publisher

Publisher

Publisher

Subscribe

Subscribe

Subscribe

‣ Subscriptions are dynamically matched and Data flows
from Publisher to Subscribers.

58

How Does it Work?

Brokers

DDS

Global Data Space

Publisher

Publisher

Publisher

Subscribe

Subscribe

Subscribe

59

Defining Data

60

A “Tweet” with DDS
Topic:

‣ Unit of information exchanged between Publisher and
Subscribers.

‣ An association between a unique name, a type and a
QoS setting

TweetType

Tweet

{
Reliable,
Persistent,
...

}

TopicType QoS

Name

61

A “Tweet” with DDS

Topic Type:

‣ Type describing the data
associated with one or more
Topics.

‣ A Topic type can have a key
represented by an arbitrary
number of attributes.

‣ Expressed	in IDL (or XML)

struct TweetType {

string userID;

string tweet;

};

#pragma keyless Tweet userID

struct ShapeType {

long x;

long y;

long shapesize;

string color;

};

#pragma keyless ShapeType color

62

DDS Topic Instances and Samples

Topic Instances:

‣ Each key value identifies a unique Topic
Instance.

‣ Topic’s instance lifetime can be explicitly
managed in DDS.

struct ShapeType {

long x;

long y;

long shapesize;

string color;

};

#pragma keyless ShapeType color

Topic Samples:

‣ The values assumed by a Topic Instance
over time are referred as Instance Sample.

63

Topic/Instances/Sample Recap

Topics Instances

Samples

ti tj tnow

64

DDS Topic Instances and Samples

‣ DDS allows the use of a subset of
SQL92 to specify content-filtered
Topics

‣ Content filters can be applied on the
entire content of the Topic Type

‣ Content filters are applied by DDS
each time	 a new sample is produced/
delivered.

(x between (RANGE x0 and x1))

AND

(y between (RANGE y0 and y1)) x0 <= x <= x1

y0 <= y <= y1

y0

y1

x0 x1

65

DDS Topic Instances and Samples

‣ Subscribed Topics can be seen locally
as “Tables”

‣ A subset of SQL92 can be used for
performing queries.

‣ Queries are performed under user
control and provide a result that
depends on the current snapshot of
the system, e.g., samples currently
available

y0

x0

color x y shapesize
red 57 62 50
blue 90 85 50

yellow 30 25 50

color x y shapesize
yellow 30 25 50

x > 25 AND y < 55

66

Organizing Data

‣ All DDS communication confined within a Domain.

‣ A domain can organized into Partitions.

‣ Partitions can be used as subjects organizing the flow of data.

‣ Publishers/Subscribers can connect to a Partitions’ List which might also contain wildcards, e.g.
shape.*

‣ Topics are published and subscribed across one or more Partitions.

67

DDS Partitions

Publisher

Publisher

Publisher

Subscribe

Subscribe

Subscribe

Domain

PartitionPartition

“shape.polygons” “shape.circles”

68

Quality of Services

69

Anatomy of a DDS Application

1	 21	
2	 20	

2

1	 22	 1	 23	
2	 19	

3	 25	 70	 3	 3	 25	 3	 26	3 25	 23 25	 3 25	 3 26	

SSaamm

TToo
InInsstatan

Topi

Instance

struct ShapeType {

long x;

long y;

long shapesize;

string color;

};

#pragma keyless ShapeType color

DataWriterData Reader

Samples

70

1	 21	
2	 20	

2

1	 22	 1	 23	
2	 19	

3	 25	 70	 3	 3	 25	 3	 26	3 25	 23 25	 3 25	 3 26	

SSaamm

TToo
InInsstatan

Topi

Instance

struct ShapeType {

long x;

long y;

long shapesize;

string color;

};

#pragma keyless ShapeType color

DataWriterData Reader

Samples

PublisherSubscribe

Partition

71

1	 21	
2	 20	

2

1	 22	 1	 23	
2	 19	

3	 25	 70	 3	 3	 25	 3	 26	3 25	 23 25	 3 25	 3 26	

SSaamm

TToo
InInsstatan

Topi

Instance

struct ShapeType {

long x;

long y;

long shapesize;

string color;

};

#pragma keyless ShapeType color

DataWriterData Reader

Samples

Partition

Domain Participant

Domain
PublisherSubscribe

72

QoS Model
‣ QoS-Polices are sued to control relevant properties of DDS

entities, including:

‣ Real-Time Delivery

‣ Bandwidth

‣ Redundancy

‣ Persistence

‣ QoS-Policies are matched based on a Request vs. Offered
(RxO) Model thus QoS-enforcement.

Bandwidth

Real-Time Delivery
Redundancy
Persistence

Configuration

73

DDS Request vs. Offer QoS (RxO) Model
‣ DDS uses a ‘request vs. offer’ QoS-matching approach:

‣ The request is granted if and only if the QoS request does not exceed the QoS
produced by the data writer.

‣ The grant ensures that:

‣ types are preserved end-to-end due to the topic type matching, and

‣ end-to-end QoS invariants are also preserved.

74

QoS Policy Applicability RxO Modifiable

DURABILITY T, DR, DW Y N

Data Availability

DURABILITY SERVICE T, DW N N

LIFESPAN T, DW N/A Y

HISTORY T, DR, DW N N

PRESENTATION P, S Y N

Data Delivery

RELIABILITY T, DR, DW Y N
PARTITION P, S N Y

DESTINATION ORDER T, DR, DW Y N

OWNERSHIP T, DR, DW Y N

OWNERSHIP STRENGTH DW N/A Y

DEADLINE T, DR, DW Y Y

Data Timeliness
LATENCY BUDGET T, DR, DW Y Y

TRANSPORT PRIORITY T, DW N/A Y

TIME BASED FILTER DR N/A Y
Resources

RESOURCE LIMITS T, DR, DW N N

ENTITY FACTORY

Configuration
USER DATA DP, DR, DW N Y
TOPIC DATA T N Y
GROUP DATA P, S N Y
LIVELINESS T, DR, DW Y N

WRITER DATA LIFECYCLE DW N/A Y
Lifecycle

READER DATA LIFECYCLE DR N/A Y

Topic (T), DataWriter (DW), DataReader (DR), DomainParticipant (DP), Publisher (P) or subscriber (S)

75

Controlling Reliability

76

Reliability
‣ The RELIABILITY QoS indicates the level of guarantee

offered by the DDS in delivering data to subscribers.

QoS Policy Applicability RxO Modifiable
RELIABILITY T, DR, DW Y N

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

77

Reliability
Possible variants are:

‣ Reliable: In steady-state the middleware guarantees that all samples in the
DataWriter history will eventually be delivered to all the DataReader.

‣ Best Effort: Indicates that it is acceptable to not retry propagation of any samples.

QoS Policy Applicability RxO Modifiable
RELIABILITY T, DR, DW Y N

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

78

History
The HISTORY QoS policy controls whether the DDS should
deliver only the most recent value, attempt to	deliver	all
intermediate values, or do something in between.

QoS Policy Applicability RxO Modifiable
HISTORY T, DR, DW N N

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

79

History
The policy can be configured to provide the following semantics:

‣ Keep Last: The DDS will only attempt to keep the most recent
“depth” samples of each instance of data identified by its key.

‣ Keep All: The DDS will attempt to keep all the samples of
each instance of data identified by its key.

1 6

2 2

3 5

History Depth = 1 (DDS Default) History Depth = 5

D
at

aR
ea

de
r

D
at

aR
ea

de
r

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3

1 4

2 4

3 4

1 5

3 5

1 6

80

Controlling Real-Time	 Properties

81

Deadline
‣ The DEADLINE QoS policy allows to define the

maximum inter-arrival time between data samples

QoS Policy Applicability RxO Modifiable
Deadline T, DR, DW Y Y

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

82

Deadline QoS

‣ DataWriter indicates that the application commits to write a
new value at least once every deadline period.

‣ DataReaders are notified by the DDS when the DEADLINE
QoS contract is violated.

Publisher Subscriber
Deadli
ne

Deadli
ne

Deadli
ne

Deadli
ne

Deadli
ne

Deadline Violation

83

Latency Budget
‣ The LATENCY_BUDGET QoS policy specifies the maximum	

acceptable delay from the time the data is written until the data
is inserted in the receiver's application-cache.

QoS Policy Applicability RxO Modifiable
Latency Budget T, DR, DW Y Y

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

84

Latency Budget

‣ The default value of the
duration is zero
indicating that the delay
should be minimized.

‣ This policy is a hint to
the DDS, not something
that must be monitored
or enforced.

T1

T2

T3

Latency Budget = Latency = TBuff +T1+T2+T3

TBuff

85

Transport Priority
‣ The TRANSPORT_PRIORITY QoS policy is a hint to	

the infrastructure as to how to set the priority of the
underlying transport used to send the data.

QoS Policy Applicability RxO Modifiable
TRANSPORT_PRIORITY T, DW - Y

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

86

Putting it Together
The real-time properties with which data is delivered to applications is impacted in DDS by the
following qualities of service:

‣ TRANSPORT_PRIORITY

‣ LATENCY_BUDGET

‣ In addition, DDS provides means for detecting performance failure, e.g., Deadline miss, by
means of the DEADLINE QoS.

‣ Given a periodic task-set {T} with	periods Di (with Di <	Di+1) and deadline equal to the
period, than QoS should be set as follows:

‣ Assign to each task Ti a TRANSPORT_PRIORITY Pi such that Pi

‣ Set for each task Ti	a DEADLINE QoS of Di

‣ For maximizing throughput and minimizing resource usage set for each Ti a
LATENCY_BUDGET QoS between Di/2 and Di/3 (this is a rule of thumb, the upper
bound is Di-(RTT/2)).

Publisher Subscriber
DeadlineDeadlineDeadlineDeadlineDeadline

Deadline Violation

87

Controlling Replication

88

Availability

Availability of data producers can be controlled via two QoS
Policies:

‣ OWNERSHIP

‣ OWNERSHIP STRENGTH

‣ Instances of exclusively owned Topics can	be modified (are
owned) by the higher	 strength writer.

‣ Writer strength is used to coordinate replicated writers.

89

Availability

R1

R2

R3

"MSFT"
"Microsoft Corp."

nge: "NASD"

33.73

ockQuoteSt
symbol:
name:
excha
quote: symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote

W1

W2’’

STRENGTH=3

STRENGTH=1

name: "Microsoft Corp."
exchange: "NASD"
quote: 33.73

tockQuote

"MSFT"

sym
name:

SD"S exchange: "NA
symbol: quote: 663.97

StockQuote

bol: "GOOG"

"Google Inc."

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote

symbol: "AAPL"

W1’

STRENGTH=2

name: "Microsoft Corp."
exchange: "NASD"
quote: 33.73

tockQuote

"MSFT"

sym
name:

SD"S exchange: "NA
symbol: quote: 663.97

StockQuote

bol: "GOOG"

"Google Inc."

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote

symbol: "AAPL"

symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote

symbol: "GOOG"
name: "Google Inc."

change: "NASD"
ote: 663.97

StockQuote

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote
symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuoteex

qu symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote

90

Availability

R1

R2

R3

"MSFT"
"Microsoft Corp."

nge: "NASD"

33.73

StockQuote
symbol:
name:
excha
quote:

W2’’

STRENGTH=1

symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote
symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote

symbol: "GOOG"
name: "Google Inc."

change: "NASD"

StockQuote

ex

qu symbol: "AAPL"

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote

symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote
symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote

symbol: "GOOG"
name: "Google Inc."

change: "NASD"

StockQuote

ex

qu symbol: "AAPL"

symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote
symbol: "GOOG"

name: "Google Inc."
exchange: "NASD"
quote: 663.97

StockQuote

symbol: "GOOG"
name: "Google Inc."

change: "NASD"

StockQuote

ex

qu symbol: "AAPL"

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

symbol: "AAPL"

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

name: "Apple Inc."
exchange: "NASD"
quote: 165.37

StockQuote

91

Controlling	 the Consistency Model

92

Durability
The DURABILITY QoS controls the data availability w.r.t. late joiners, specifically the DDS provides the following variants:

‣ Volatile: No need to keep data instances for late joining data readers

‣ Transient Local: Data instance availability for late joining data reader is tied to the data writer availability

‣ Transient: Data instance availability outlives the data writer

‣ Persistent: Data instance availability outlives system restarts

Publisher

Topic

Type

QoS

Name

writes

QoS

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS

......

QoS

DataReader

DataWriter

QoS

QoS matching

QoS matching

QoS Policy Applicability RxO Modifiable

DURABILITY T, DR, DW Y N

DURABILITY
SERVICE T, DW N N

93

Eventual Consistency & R/W	Caches
Under an Eventual Consistency Model, DDS guarantees that

all matched Reader Caches will eventually be
identical of the respective Writer Cache

1 1

2 1

3 1 DataWrite

1 2

2 3

3 1

DataWriter Cache

DataReade

1 1

2 1

3 1

DataWriter Cache
1 2

2 2 2 3

Topic

Topic

DataReade

1 2

2 3

3 1

DataWriter Cache

Topic

DataReade

1 2

2 1

3 1

DataWriter Cache

Topic

94

Durability

QoS Policy Applicability RxO Modifiable

DURABILITY T, DR, DW Y N

LIFESPAN T, DW - Y

RELIABILITY T, DR, DW Y N

DESTINATION ORDER T, DR, DW Y N

The DDS Consistency Model is a property that can be associated to Topics or further	
refined by Reader/Writers. The property is controlled by the following QoS Policies:

‣ DURABILITY

‣ VOLATILE | TRANSIENT_LOCAL | TRANSIENT | PERSISTENT

‣ LIFESPAN

‣ RELIABILITY

‣ RELIABLE | BEST_EFFORT

‣ DESTINATION ORDER

‣ SOURCE_TIMESTAMP | DESTINATION_TIMESTAMP

95

QoS & Consistency Model
DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN

Eventual
Consistency (No
Crash / Recovery)

VOLATILE RELIABLE SOURCE_TIMESTAMP INF.

Eventual Consistency
(Reader Crash /
Recovery)

TRANSIENT_LOCAL RELIABLE SOURCE_TIMESTAMP INF.

Eventual
Consistency
(Crash/Recovery)

TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

Eventual
Consistency
(Crash/Recovery)

PERSISTENT RELIABLE SOURCE_TIMESTAMP INF.

Weak Consistency ANY ANY DESTINATION_TIMESTAMP ANY

Weak Consistency ANY BEST_EFFORT ANY ANY

Weak Consistency ANY ANY ANY N

Intel-NTU Connected Context Computing Center

96

DURABILITY RELIABILITY DESTINATION_ORDER LIFESPAN
Eventual Consistency
(Reader
Crash / Recovery)

TRANSIENT_LOCA
L RELIABLE SOURCE_TIMESTAMP INF.

Eventual Consistency
(Crash/Recovery) TRANSIENT RELIABLE SOURCE_TIMESTAMP INF.

Weak Consistency ANY ANY ANY N

P1

P2

S1

S3

S2

BA

J

A

DC

S={A, D}

S={A, B, J}

S={A}

P={A, B}

P={D, C, J}

{A}

{B}

{J}

97

Summary
‣ Message exchange for mission critical systems require real-

time guarantee. Communications in (self-driving) cars is one
of the latest common use scenario.

‣ It is unrealistic and impossible to guarantee all message
exchanges to meet real-time constraints due to limited
resources.

‣ ROS is one of the real-time communication protocols to
be implemented on off-the-shelf networks.

‣ Understand the requirements and available resources
are mandatory to design the systems.

‣ Formal analysis are available and should be taken before
dumping data into the network.

98

Reference

‣ Forsberg, Andreas. “Comparison of FlexRay and CAN-bus
for Real-Time Communication.” (2009).

‣ The DDS Tutorial, Angelo Corsaro.

