
Distributed File Systems

Introduction

Introduction

Functionalities
■ Remote information

sharing
■ User mobility
■ Availability
■ Diskless workstations

Introduction

Functionalities
■ Remote information

sharing
■ User mobility
■ Availability
■ Diskless workstations

Services
■ Storage service
■ True file service
■ Name service

Topics

■Desirable Features

■File Models

■File-Accessing Models

■File-Sharing Semantics

■File-Caching Schemes

■File Replication

■Fault Tolerance

■Case Study: CODA File System

■Case Study: Google File System andBigTable

Discussion: Desirable Features

Desirable Features

■Transparency:

▪ Structure transparency
▪ Access transparency
▪ Naming transparency
▪ Replication transparency

■User Mobility

■Performance

■Simplicity and ease of
use

■Scalability

■High availability

■High reliability

■Data integrity

■Security

■Heterogeneity

File Models – Unstructured/
Structured Files

■Unstructured files:

▪ A file is an unstructured sequence of data.

▪ The operating system is not interested in the information stored

in the files.

▪ The interpretation of the meaning and structure of the data

stored in the files are entirely up to the application programs.

▪ Who are using this model: UNIX and DOS.

■Structured files:

▪ Non-indexed records

▪ Indexed records

▪ This model was planned to be deployed in Windows 7.

File Models: Mutable/
Immutable Files

■Mutable file model: an update overwrites on its old
contents to produce the new contents.

■ Immutable file model:

▪ A history of the files or file changes are stored.

▪ Pros:

▪ Easier to support file caching and replication

▪ Cons:

▪ Increased use of disk space and

▪ Increased disk allocation activity

▪ Cedar File System, 1988:

▪ Only a limited number of historical files are stored.

▪ The users can specify a historical file for file access.

File Access Models

■How the users access the files depends on the
file access models used by the DFS.

■Two factors: access method and data units

▪ the method used for accessing remote files

▪ Remote Service Model: network overhead should be

minimized.

▪ Data-Caching Model: concurrence control must be

considered.

▪ Hybrid method:

▪ LOCUS and NFS use the remote service model but add caching for

better performance.

▪ Sprite uses the data-caching model but employs remote access

under certain circumstances.

Accessing Remote Files -
Remote Service Model

Pros and Cons

Server client
MSG(read(file, 0, 100))

MSG(“This is 100 bytes data from server”)

User Process

read(file, 0, 100) (data)

Accessing Remote Files – Data-
Caching Model

Pros and Cons

■Write operation may incur substantial overhead.

■ It could reduce network traffic, contention for the network, and

contention for the file servers.

Server client

if cached

User Process

read (file, 0, 100) (data)

Caching “file”

”file”

Class Discussion

■How you determine the access model for your
distributed file systems?

Unit of Data Transfer

Pros Cons Examples

File-level

● Better efficiency

● Better scalability

● Low disk access

overhead

● Reliability

● Greater storage
space on client side

● wasteful of storage
space under certain
case

Ameoba, Cedar
File System
(CFS), and
Andrew File
System (AFS-2)

Block-level
● Less storage space

on client sides

● Poor performance

when the entire file
is requested

Apollo domain
file system,
LOCUS and
Sun’s NFS

Byte-level ● Maximum flexibility ● Difficult for cache
management

Cambridge File
Server

Record-level ● Best for structured file
model RSS

Unit of Data Transfer

Pros Cons Examples

File-level

● Better efficiency

● Better scalability

● Low disk access

overhead

● Reliability

● Greater storage
space on client side

● wasteful of storage
space under certain
case

Ameoba, Cedar
File System
(CFS), and
Andrew File
System (AFS-2)

Block-level
● Less storage space

on client sides

● Poor performance

when the entire file
is requested

Apollo domain
file system,
LOCUS and
Sun’s NFS

Byte-level ● Maximum flexibility ● Difficult for cache
management

Cambridge File
Server

Record-level ● Best for structured file
model RSS

Unit of Data Transfer

Pros Cons Examples

File-level

● Better efficiency

● Better scalability

● Low disk access

overhead

● Reliability

● Greater storage
space on client side

● wasteful of storage
space under certain
case

Ameoba, Cedar
File System
(CFS), and
Andrew File
System (AFS-2)

Block-level
● Less storage space

on client sides

● Poor performance

when the entire file
is requested

Apollo domain
file system,
LOCUS and
Sun’s NFS

Byte-level ● Maximum flexibility ● Difficult for cache
management

Cambridge File
Server

Record-level ● Best for structured file
model RSS

Unit of Data Transfer

Pros Cons Examples

File-level

● Better efficiency

● Better scalability

● Low disk access

overhead

● Reliability

● Greater storage
space on client side

● wasteful of storage
space under certain
case

Ameoba, Cedar
File System
(CFS), and
Andrew File
System (AFS-2)

Block-level
● Less storage space

on client sides

● Poor performance

when the entire file
is requested

Apollo domain
file system,
LOCUS and
Sun’s NFS

Byte-level ● Maximum flexibility ● Difficult for cache
management

Cambridge File
Server

Record-level ● Best for structured file
model RSS

Unit of Data Transfer

Pros Cons Examples

File-level

● Better efficiency

● Better scalability

● Low disk access

overhead

● Reliability

● Greater storage
space on client side

● wasteful of storage
space under certain
case

Ameoba, Cedar
File System
(CFS), and
Andrew File
System (AFS-2)

Block-level
● Less storage space

on client sides

● Poor performance

when the entire file
is requested

Apollo domain
file system,
LOCUS and
Sun’s NFS

Byte-level ● Maximum flexibility ● Difficult for cache
management

Cambridge File
Server

Record-level ● Best for structured file
model RSS

Unit of Data Transfer

Pros Cons Examples

File-level

● Better efficiency

● Better scalability

● Low disk access

overhead

● Reliability

● Greater storage
space on client side

● wasteful of storage
space under certain
case

Amoeba, Cedar
File System
(CFS), and
Andrew File
System (AFS-2)

Block-level
● Less storage space on

client sides

● Poor performance

when the entire file
is requested

Apollo domain
file system,
LOCUS and
Sun’s NFS

Byte-level ● Maximum flexibility ● Difficult for cache
management

Cambridge File
Server

Record-level ● Best for structured file
model RSS

Semantics of File Sharing (1)

■On a single processor, when a read follows a
write, the value returned by the read is the value
just written.

■In a distributed system with caching, obsolete

values may be returned.

Semantics of File Sharing (2)

■ Four ways of dealing with the shared files in a distributed system.

■ UNIX semantics is desirable for distributed file systems but is difficult to

implement due to poor performance, poor scalability, and poor reliability.

■ Relaxed semantics of file sharing are usually used.

Method Remark

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

File-Caching Schemes- Cache
location

Client’s

main memory

client’s

disk

Server’s

main memory

Server’s

disk

File-Caching Schemes - Cache
location

Client’s

main memory

client’s

disk

Server’s

main memory

Server’s

disk

File-Caching Schemes - Cache
location

Client’s

main memory

client’s

disk

Server’s

main memory

Server’s

disk

Server’s Main Memory

• Eliminate the disk access

• Easy to implement

• Easy to maintain the consistence

• May support UNIX file-sharing

semantics

• Scalability and reliability are still

open.

File-Caching Schemes - Cache
location

Client’s

main memory

client’s

disk

Server’s

main memory

Server’s

disk

Client’s Disk

• Eliminate the network access

• Reliable

• Large storage capacity

• Useful for those system using the file-

level transfer model.

• Not working for diskless clients.

• Access time is still considerable large

due to the local disk access.

File-Caching Schemes - Cache
location

Client’s

main memory

client’s

disk

Server’s

main memory

Server’s

disk

Client’s Main Memory

• Eliminate the disk access and

network access.

• Maximum performance gain

• Not suitable for file-level

sharing.

File Cache vs. Memory Cache

■Size:

▪ Memory cache are located in CPU and are limited.

▪ L1 ~ L4: 4KB ~ 128MB (on Intel Iris Pro Graphics).

▪ File cache are located in memory or file systems and
can be as large as the full file.

■Impedance Mismatch

▪ Memory access delay: local bus + memory access

▪ File access delay: communication (mostly network) +

secondary storage access.

File-Caching Schemes –
Modification Propagation

■Two design issues:

▪ When to propagate modifications?

▪ How to verify the validity of cached data?

■The modification propagation scheme used has a
critical effect on the system’s performance.

■Write-Through Scheme

▪ The new value is immediately sent to the server.

▪ It has high reliability and suitability for UNIX-like semantics

and poor write performance.

▪ Only suitable for fairly large read-to-write ratio.
How to propagate the modified

data?

File-Caching Schemes –
Modification Propagation

■Two design issues:

▪ When to propagate modifications?

▪ How to verify the validity of cached data?

■The modification propagation scheme used has a
critical effect on the system’s performance.

■Write-Through Scheme

▪ The new value is immediately sent to the server.

▪ It has high reliability and suitability for UNIX-like semantics

and poor write performance.

▪ Only suitable for fairly large read-to-write ratio.

Delay-Write Scheme
■Delay-Write Scheme

▪ When the cache is modified, the new value is written only

to the cache and the client only makes a note that the
cache entry has been updated.

▪ All updated cache entries corresponding to a file are
gathered together and sent to the server at a time.

■Different types of writing back

▪ Write on ejection from cache

▪ Periodic write

▪ Write on close

■ It improves the performance but may suffer from
reliability problem.

File Replication-  
What’s the difference between caching and

replication?

File Replication-  
What’s the difference between caching and

replication?

■A replica is associated with a server ; a cache is
normally associated with a client.

File Replication-  
What’s the difference between caching and

replication?

■A replica is associated with a server ; a cache is
normally associated with a client.
■A replica exists to improve the availability and

performance; the existence of a cache depends
on the locality in file access pattern.

▪ We barely discuss caching for DSM. Can you think of

the reasons?

File Replication-  
What’s the difference between caching and

replication?

■A replica is associated with a server ; a cache is
normally associated with a client.
■A replica exists to improve the availability and

performance; the existence of a cache depends
on the locality in file access pattern.

▪ We barely discuss caching for DSM. Can you think of

the reasons?
■A replica is more persistent than a cache.

File Replication-  
What’s the difference between caching and

replication?

■A replica is associated with a server ; a cache is
normally associated with a client.
■A replica exists to improve the availability and

performance; the existence of a cache depends
on the locality in file access pattern.

▪ We barely discuss caching for DSM. Can you think of

the reasons?
■A replica is more persistent than a cache.
■A cached copy is contingent upon a replica.

Multicopy Update Problem (1)

Multicopy Update Problem (1)

■ Read-Only Replication

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol
▪ Allows the replication of both immutable and mutable files.

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol
▪ Allows the replication of both immutable and mutable files.
▪ Requires to read any copy of the replicated files and to write to all

copies of the replicated files.

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol
▪ Allows the replication of both immutable and mutable files.
▪ Requires to read any copy of the replicated files and to write to all

copies of the replicated files.
▪ Requires lock to perform the write operations.

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol
▪ Allows the replication of both immutable and mutable files.
▪ Requires to read any copy of the replicated files and to write to all

copies of the replicated files.
▪ Requires lock to perform the write operations.

■ Available-Copies Protocol

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol
▪ Allows the replication of both immutable and mutable files.
▪ Requires to read any copy of the replicated files and to write to all

copies of the replicated files.
▪ Requires lock to perform the write operations.

■ Available-Copies Protocol
▪ Allows to write on “available” copies.

Multicopy Update Problem (1)

■ Read-Only Replication
▪ Allows the replication of only immutable files.
▪ Is suitable for frequently read and modified only once in a while, such

as object codes of the system programs and reverse-indexed web
search database.

■ Read-Any-Write-All Protocol
▪ Allows the replication of both immutable and mutable files.
▪ Requires to read any copy of the replicated files and to write to all

copies of the replicated files.
▪ Requires lock to perform the write operations.

■ Available-Copies Protocol
▪ Allows to write on “available” copies.
▪ Does not prevent inconsistence in the presence of communication

failure.

Multicopy Update Problem (2)

Multicopy Update Problem (2)

■Primary-Copy Protocol

▪ Each file has one primary copy and several

secondary copies.

▪ Write operations are done on primary copy;

Secondary copies are updated later.

Multicopy Update Problem (2)

■Primary-Copy Protocol

▪ Each file has one primary copy and several

secondary copies.

▪ Write operations are done on primary copy;

Secondary copies are updated later.
■Quorum-Based Protocol:

▪ Read-any-write-all and available-copies suffer from

the network partition problem.

▪ We may increase the availability at the expense of

read operations.

Quorum-Based Protocol

1

2

3

4
5

6

8

7

Read Quorum

r = 4

Quorum-Based Protocol

1

2

3

4
5

6

8

7

Write Quorum

w = 6

Read Quorum

r = 4

Quorum-Based Protocol

1

2

3

4
5

6

8

7

Write Quorum

w = 6

Read Quorum

r = 4

Quorum-Based Protocol

1

2

3

4
5

6

8

7Notice that the combination of quorum
changes from time to time so the protocol
can maintain the consistence.

Write Quorum

w = 6

Read Quorum

r = 4

Quorum-Based Protocol

1

2

3

4
5

6

8

7Notice that the combination of quorum
changes from time to time so the protocol
can maintain the consistence.

Read operation:

-Retrieve a read quorum (any r copies) of F.

-Of the r copies retrieved, select the copy with the
largest version number.

-Perform the read operation on the selected copy.

Write Quorum

w = 6

Read Quorum

r = 4

Quorum-Based Protocol

1

2

3

4
5

6

8

7
Notice that the combination of
quorum changes from time to time so
the protocol can maintain the
consistence.

Write Quorum

w = 6

Read Quorum

r = 4

Quorum-Based Protocol

1

2

3

4
5

6

8

7
Notice that the combination of
quorum changes from time to time so
the protocol can maintain the
consistence.

Write operation:

-Retrieve a write operation (any w copies) of F.

-Of the w copies retrieved, get the version number of
the copy with the largest version number.

-Increment the version number.

-Write the new value and the new version number to all
the w copies of the write quorum.

Fault Tolerance

■What kind of failures are subtle to distributed
file systems?

▪ A server loses the contents of its main memory in

the event of a crash.

▪ During a request processing, the server or client may

crash, resulting in the loss of state information of the
file being accessed.

▪ Transient faults caused by electromagnetic
fluctuations

▪ Decay of disk storage device

Effect of Service Paradigm on Fault Tolerance 
Stateful File Servers vs. Stateless File Servers

■ Stateful IO Functions:

▪ fid = Open(filename, mode)

▪ read(fid, n, buffer), write(fid, n, buffer),
seek(fid, position), and

▪ close(fid).

■ Stateless IO Functions:

▪ read(filename, position, buffer)

▪ write(filename, position, buffer)

■ State information shall be maintained for a certain amount of
time, which is called session.

■ A session starts with open() and ends with close().

■ Stateful service requires complex crash recovery procedures.

But, there is no free lunch.

■ Stateless services have the following constraints:

▪ Each file should have a system-wide low-level name associated with it.
▪ Operations including read, write and delete files on stateless servers have

to be idempotent to protect the server from duplicate requests.
■ Stateless services suffer from

▪ longer request messages and
▪ slower processing of requests.

■ In some cases, stateful service becomes necessary.

▪ The packets transmitted over the network may be received out of its

sending order.
▪ State info will be useful to maintain the correct order.

Case Study: CODA File System

Coda

■Coda: descendent of the Andrew file system at CMU

▪ Andrew designed to serve a large (global) community.

▪ Started in 1987, and the last change was in 2011.

■Salient features:

▪ Support for disconnected operations

▪ Desirable for mobile users

▪ Support for a large number of users

▪ Not support for

▪ highly concurrent and

▪ fine granularity data access.

Overview of Coda

■ Centrally administered Vice file servers

■ Large number of virtue clients

Client/Venus/Vice in Coda

Kernel

Virtue
(Client/

Applications)

Venus
(cache

Manager)

Vice (File
Server)

Virtue: Coda Clients

■ The internal organization of a Virtue workstation.

▪ Designed to allow access to files even if server is unavailable
▪ Uses VFS and appears like a traditional Unix file system

Communication in Coda

■ Coda uses RPC2: a sophisticated reliable RPC system

▪ Start a new thread for each request, server periodically informs client it is still working on

the request.
■ RPC2 supports side-effects: application-specific protocols

▪ Useful for video streaming [where RPCs are less useful]
■ RPC2 also has multicast support.

Communication: Invalidations

a) Sending an invalidation message one at a time using traditional
RPC.

b) Sending invalidation messages in parallel using RPC2.

Client/Venus/Vice in Coda

Kernel

Virtue
(Client/

Applications)

Venus
(cache

Manager)

Vice (File
Server)

1

8

2

7

6
3

4

5

vfs Coda FS

Ext2 FS

NFS

Sharing Files in Coda

■ Transactional behavior for sharing files: similar to share reservations in NFS

▪ File open: transfer entire file to client machine [similar to delegation]
▪ Uses session semantics: each session is like a transaction

▪ Updates are sent back to the server only when the file is closed

Transactional Semantics
■ Network partition: part of network isolated from rest

▪ Allow conflicting operations on replicas across file partitions
▪ Reconcile upon reconnection
▪ Transactional semantics => operations must be serializable
▪ Ensure that operations were serializable after they have executed
▪ Conflict => force manual reconciliation

■ Knowing the metadata for each session makes it easier for CODA to recognize
the conflicts.

File-associated data Read? Modified?

File identifier Yes No

Access rights Yes No

Last modification time Yes Yes

File length Yes Yes

File contents Yes Yes

Metadata for store session in Coda

Conflicts Across Partitions

■ Two important observations:

▪ A Venus process knows which data to fetch from the server at the start of

a session. So, it can acquire the necessary locks at the start of a session.
▪ Two-phase locking (2PL) is used. So, all result schedules are serializable.

Two-Phase Locking

■Lock the data when read/write.

■(Non-Strict) Two-Phase Locking:

▪ If a transaction T wants to read/write an object, it must

request a shared/exclusive lock on the object.
▪ A transaction cannot request additional locks on an object

once it releases any lock, and it can release locks at any time.

If anything will go wrong, it will.

-- Murphy's Laws

In nature, nothing is ever right. Therefore, if everything is going
right ... something is wrong.

Two-Phase Locking

■Two-phase locking.

Testing for Serializability: Serialization
Graphs
■ Input: Schedule S for set of transactions T1, T2, …, Tk.

■Output: Determination whether S is serializable.

■Method:

▪ Create serialization graph G:
▪ Nodes: correspond to transactions
▪ Arcs: G has an arc from Ti to Tj if there is a Ti:UNLOCK(Am) operation

followed by a Tj:LOCK(Am) operation in the schedule.

▪ Perform topological sorting of the graph.
▪ If graph has cycles, then S is not serializable.	
▪ If graph has no cycles, then topological order is a serial order for

transactions.

Testing for Serializability: Serialization
Graphs
■ Input: Schedule S for set of transactions T1, T2, …, Tk.

■Output: Determination whether S is serializable.

■Method:

▪ Create serialization graph G:
▪ Nodes: correspond to transactions
▪ Arcs: G has an arc from Ti to Tj if there is a Ti:UNLOCK(Am) operation

followed by a Tj:LOCK(Am) operation in the schedule.

▪ Perform topological sorting of the graph.
▪ If graph has cycles, then S is not serializable.	
▪ If graph has no cycles, then topological order is a serial order for

transactions.

A topological sort of a directed
graph is a linear ordering of

its vertices such that for every
directed edge uv from vertex u to
vertex v, u comes before v in the

ordering.

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Vertex_(graph_theory)

The graph shown to the left has many valid topological sorts,
including:

• 5, 7, 3, 11, 8, 2, 9, 10 (visual left-to-right, top-to-bottom)

• 3, 5, 7, 8, 11, 2, 9, 10 (smallest-numbered available

vertex first)

• 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first)

• 7, 5, 11, 3, 10, 8, 9, 2 (largest-numbered available vertex

first)

• 5, 7, 11, 2, 3, 8, 9, 10 (attempting top-to-bottom, left-to-

right)

• 3, 7, 8, 5, 11, 10, 2, 9 (arbitrary)

Serializability of Two-Phase Locking

■Theorem: If S is any schedule of two-phase
transactions, then S is serializable.

■Proof:

▪ Suppose not. Then the serialization graph G for S has

a cycle, Ti1 -> Ti2 -> … -> Tip -> Ti1

▪ Therefore, a lock by Ti1 follows an unlock by Ti1,
contradicting the assumption that Ti1 is two-phase.

Transactions that read ‘dirty
‘ data

■ Assume that T1 fails after (13).

▪ T1 still holds lock on B.
▪ Value read by T2 at step (8) is

wrong.
■ T2 must be rolled back and

restarted.

▪ Some transaction T3 may have read

value of A between steps (13) and
(14)

(1) 	 LOCK A

(2) 	 READ A

(3) 	 A:=A-1

(4) 	 WRITE A

(5) 	 LOCK B

(6) 	 UNLOCK A

(7) 	 	 	 LOCK A

(8) 	 	 	 READ A

(9)	 	 	 A:=A*2

(10) 	 READ B

(11) 	 	 	 WRITE A

(12) 	 	 	 COMMIT

(13) 	 	 	 UNLOCK A

(14) 	 B:=B/A

	 T1 	 	 T2

Strong Strict Two-Phase
Locking
■ Transaction may be aborted because of conflicts during

shrinking phase

■ Strong Strict two-phase locking: locks are released after the

transactions are committed.

Prove serializability with
SS2PL

■A serializable schedule contain no read/write and
write/write conflicts in the schedule.

■2PL assures that at most one transaction can write on
one data item.

■Proof by contradiction:

▪ Suppose there is a unserializable schedule following SS2PL.
▪ There must be a read/write or write/write conflict in the schedule.
▪ However, SS2PS assures that there is at most one transaction to read

or write a data item.
▪ The assumption is contradicted.

Conflicts Across Partitions

■ A file version system is used to solve conflicts.

▪ In a partition, the operations are executed as if nothing happened.
▪ When reconnected, updates are transferred to the server in the same

order as they took place at the client.
▪ Version number is used to solve the conflicts.
▪ A update is accepted if and only if

Current version number + 1 = Last version number on the client + numbers of
successful update during the session on the server.

Discussion: Replica Control

■Replica of file servers are kept to improve the
availability of the system. However, the network
may be partitioned into sub-networks from
time to time.

■Pessimistic vs. Optimistic replica control

▪ Pessimistic: make sure no one is accessing the file.

▪ Optimistic: read/write the file and solve the conflict

later.

■Which strategy is better for CODA?

▪ Think about the assumption for CODA.

Server Replication

■ Use replicated writes: read-once write-all

▪ Writes are sent to all AVSG (all accessible replicas)

■ How to handle network partitions?

▪ Use optimistic strategy for replication
▪ Detect conflicts using a Coda version vector
▪ Example: [2,2,1] and [1,1,2] is a conflict => manual reconciliation

[2,2,1]

[2,2,1]

[1,1,2]

Client Caching

■ Cache consistency maintained using callbacks

▪ Server tracks all clients that have a copy of the file [provide callback promise]
▪ Upon modification: send invalidate to clients
▪ No file transfer is need when callback promise holds.

Disconnected Operation

■ The state-transition diagram of a Coda client with respect to a volume.

■ Use hoarding to provide file access during disconnection

▪ Prefetch all files that may be accessed and cache (hoard) locally
▪ If AVSG=0, go to emulation mode and reintegrate upon reconnection

Caching Management

■ Cache space is finite and CODA caches entire file not parts of the
files.
▪ Caching parts of the files is difficult to support disconnected services.

■ Prioritized cache management:
▪ The users specify the priority of the files and directories to construct hoard

database (HDB).
▪ Priority also changes from time to time based on use history.
▪ Less critical files are removed.
▪ Hierarchical cache management allows the system to resolve the pathname of a

cached object while disconnected.
■ Hoarding walk:

▪ A cache is in equilibrium when no un-cached object has a higher priority than
cached objects.

▪ Venus periodically restore equilibrium by performing hoard walk.

BigTable and Google File
Systems (GFS)

BigTable and Google File
Systems (GFS)
■ Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. 2008. Bigtable: A Distributed
Storage System for Structured Data. ACM Trans. Comput. Syst. 26,
2, Article 4 (June 2008), 26 pages.

■ Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003.
The Google file system. In Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP '03). ACM,
New York, NY, USA, 29-43.

■ Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51, 1 (January
2008), 107-113.

Motivation

■Lots of (semi-)structured data at Google

▪ URLs:
▪ Contents, crawl metadata, links, anchors, pagerank, …

▪ Per-user data:
▪ User preference settings, recent queries/search results, …

▪ Geographic locations:
▪ Physical entities (shops, restaurants, etc.), roads, satellite image data, user

annotations, …
■Scale is large

▪ Billions of URLs, many versions/page (~20K/version)
▪ Hundreds of millions of users, thousands of q/sec
▪ 100TB+ of satellite image data

How About Commercial DB?

■Scale is too large for most commercial databases

■Even if it weren’t, cost would be very high

▪ Building internally means system can be applied across many

projects for low incremental cost
■Low-level storage optimizations help performance

significantly

▪ Much harder to do when running on top of a database layer

Goals

■Want asynchronous processes to be continuously
updating different pieces of data

▪ Want access to most current data at any time

■Need to support:

▪ Very high read/write rates (millions of ops per second)
▪ Efficient scans over all or interesting subsets of data
▪ Efficient joins of large one-to-one and one-to-many datasets

■Often want to examine data changes over time

▪ E.g. Contents of a web page over multiple crawls

BigTable: a distributed storage
system

■BigTable is a distributed storage system for managing
(semi-)structured data.

■Designed to scale to a very large size

▪ Petabytes of data across thousands of servers

■Used for many Google projects

▪ Web indexing, Personalized Search, Google Earth, Google

Analytics, Google Finance, …
■Flexible, high-performance solution for all of Google’s

products

Features of BigTable

■Distributed multi-level map for MapReduce
applications

■Fault-tolerant and persistent

■Scalable

▪ Thousands of servers
▪ Terabytes of in-memory data
▪ Petabyte of disk-based data
▪ Millions of reads/writes per second, efficient scans

■Self-managing

▪ Servers can be added/removed dynamically
▪ Servers adjust to load imbalance

Building Blocks

■Building blocks:

▪GFS: raw storage to store persistent data

(SSTable file format for storage of data)
▪ Scheduler: schedules jobs on machines

involved in BigTable serving
▪Chubby Lock service: master election,

location bootstrapping, which is a distributed
lock manager.
▪Map Reduce: simplified large-scale data

processing and often used to read/write
BigTable data

Client
Client

Misc. servers

ClientR
ep

lic
as

Masters
GFS Master

GFS Master

C0 C1

CC5
Chunkserver 1

C0

C
C5

Chunkserver N

C1

CC5
Chunkserver 2

…
• Master manages metadata

• Data transfers happen directly between clients/chunkservers

• Files broken into chunks (typically 64 MB)

• Chunks triplicated across three machines for safety

Google File System (GFS)

Google File System

■Large-scale distributed “file system”
■Master: responsible for metadata

■Chunk servers: responsible for reading and writing

large chunks of data

▪ Chunks replicated on 3 machines, master responsible for

ensuring replicas exist
▪ Chubby:
▪ {lock/file/name} service
▪ Coarse-grained locks, can store small amount of data in a lock.

66

Chubby - Lock Services in GFS

■When there are number of replicas located at
various locations, lock and consensus are
mandatory.

■3 to 5 replicas, need a majority vote to be

active

■OSDI ’06 Paper

■Link

Basic Data Model

■A BigTable is a sparse, distributed persistent multi-
dimensional sorted map

(row, column, timestamp) -> cell contents

■Good match for most Google applications

WebTable Example

■Want to keep copy of a large collection of web pages and
related information

■ Use URLs as row keys

■ Various aspects of web page as column names

■ Store contents of web pages in the contents: column under

the timestamps when they were fetched.

Rows

■Name is an arbitrary string

▪ Access to data in a row is atomic
▪ Row creation is implicit upon storing data

■Rows ordered lexicographically

▪ Rows close together lexicographically usually on one or a

small number of machines
■Example:

	 math.gatech.edu, math.uga.edu, phys.gatech.edu, phys.uga.edu

	 VS

	 edu.gatech.math, edu.gatech.phys, edu.uga.math, edu.uga.phys

Columns

■Columns have two-level name structure:

▪ family:optional_qualifier

■Column family

▪ Unit of access control
▪ Has associated type information

■Qualifier gives unbounded columns

▪ Additional levels of indexing, if desired

Timestamps

■ Used to store different versions of data in a cell

▪ New writes default to current time, but timestamps for writes can also be set

explicitly by clients
■ Lookup options:

▪ “Return most recent K values”
▪ “Return all values in timestamp range (or all values)”

■ Column families can be marked w/ attributes:

▪ “Only retain most recent K values in a cell”
▪ “Keep values until they are older than K seconds”

Data Structure for BigTable

■BigTable is a large map that is indexed by a row
key, column key, and a timestamp.

■A map is an associative array;

▪ a data structure that allows one to look up a value

to a corresponding key quickly.

▪ BigTable is a collection of (key, value) pairs where the

key identifies a row and the value is the set of
columns.

▪ Each value within the map is an array of bytes that is
interpreted by the application

Multidimensional Table

■A table is indexed by rows.

■Each row contains one or more named column

families.

■Within a column family, one may have one or

more named columns.

■Time is another dimension in BigTable data.

Every column family may keep multiple versions
of column family data.

com.cnn.www" : {		 // row

”anchor" : {			 // column family

”cnnsi.com": ”CNN",		 // column

”my.look.ca": ”CNN.com",		 // column

}

”contents" : {				 // another column family

"" : “<html>...</html>"		 // column (null name)

}

}

Adding Timestamp

com.cnn.www" : {		 // row
”anchor" : {			 // column family
”cnnsi.com": {

“2010/01/01:00:00:00”: ”CNN",		 //
column

“2012/04/01:00:00:00”: ”CNNSI",		 //
column

”my.look.ca": ”CNN.com",		 // column
}
”contents" : {

“2010/01/01:00:00:00”:{		 // another column family
"" : “<html>...</html>"		 // column (null name)
}
“2012/04/01:00:00:00”:{		 // another column family
"" : “<html>...</html>"		 // column (null name)
}

}
}

Relational database vs.
BigTable
Relational DB BigTable

Database BigTable
Table Column Family
Primary Key Row
B-Tree Node Tablet
Transaction Atomic Row Update
Schema Column Family Schema

Table

■ Multiple tablets make up the table

■ SSTables can be shared

■ Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet

aardvark apple
Tablet

apple_two_E boat

Tablets

■Large tables broken into tablets at row boundaries

▪ Tablet holds contiguous range of rows
▪ Clients can often choose row keys to achieve locality

▪ Aim for ~100MB to 200MB of data per tablet
■Serving machine responsible for ~100 tablets

▪ Fast recovery:
▪ 100 machines each pick up 1 tablet for failed machine

▪ Fine-grained load balancing:
▪ Migrate tablets away from overloaded machine
▪ Master makes load-balancing decisions

SSTables
■ Tablets are built out of multiple SSTables

■ SSTable:

▪ Immutable, sorted file of key-value pairs
▪ Chunks of data plus an index, which is of block ranges, not values

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

Implementation – Three Major
Components

■Library linked into every client

■One master server

▪ Responsible for :
▪ Assigning tablets to tablet servers
▪ Detecting addition and expiration of tablet servers
▪ Balancing tablet-server load
▪ Garbage collection

■Many tablet servers

▪ Tablet servers handle read and write requests to its table
▪ Splits tablets that have grown too large

Typical Cluster

Cluster Scheduling Master Lock Service GFS Master

Machine 1

Scheduler 
Slave

GFS 
Chunkserver

Linux

User 
Task

Machine 2

Scheduler 
Slave

GFS 
Chunkserver

Linux

User 
Task

Machine 3

Scheduler 
Slave

GFS 
Chunkserver

Linux

Single Task

BigTable 
Server

BigTable 
Server BigTable Master

Implementation (cont.)

■Client data doesn’t move through master
server. Clients communicate directly with tablet
servers for reads and writes.

■Most clients never communicate with the

master server, leaving it lightly loaded in
practice.

Tablet Location

■Since tablets move around from server to
server, given a row, how do clients find the right
machine?

▪ Need to find tablet whose row range covers the

target row

Tablet Assignment
■Each tablet is assigned to one tablet server at a

time.

■Master server keeps track of the set of live

tablet servers and current assignments of
tablets to servers. Also keeps track of
unassigned tablets.

■When a tablet is unassigned, master assigns the

tablet to an tablet server with sufficient room.

Client
Client

Misc. servers

ClientR
ep

lic
as

Masters
GFS Master

GFS Master

C0 C1

CC5
Chunkserver 1

C0

C
C5

Chunkserver N

C1

CC5
Chunkserver 2

…
• Master manages metadata

• Data transfers happen directly between clients/chunkservers

• Files broken into chunks (typically 64 MB)

• Chunks triplicated across three machines for safety

Google File System (GFS)

Chubby Lock service

■The lock service must be

▪ Available: the show must go on even if one lock

server is down

▪ Consistent: multiple lock servers must have the same

data.

▪ Fault-Tolerant: disk crash, message loss/delay, servers

goes down/up

■Chubby is Google’s distributed lock service

using the Paxos consensus algorithm.

Consensus Problem

■ Consensus problem: reaching agreement among a collection of
N processes that can propose values

▪ Each process can have a value V[i], i=1, …, M
▪ At the end of the consensus algorithm, every process has chosen the

same value V[k] for some k in 1, …, M.
▪ Cannot choose more than 1 value or non-proposed value.
▪ Cannot learn that a value is chosen until it is actually chosen.

■ A hard problem in the presence of failures

▪ Crash failure: processes may crash and recover, disks may get corrupted.
▪ Omission failures: messages may be lost
▪ Byzantine failures: processes may lie

Terminology

■ Value: any computer datum (e.g., integer, string)

■ Process: a program that participates in the algorithm.

■ Consensus: a value agreed by a collection of processes.

■Quorum: absolute majority of processes agreeing on a value

■ Consensus algorithm: an algorithm that produces a consensus

from a collection of processes.

■ Safety: the algorithm never goes into an illegal state (e.g., data

consistency is maintained across processes.)

■ Liviness: algorithm makes progress.

Paxos Parliament: Part-time
Parliament
■ Early in this millennium, the Aegean island of Paxos

was a thriving mercantile center.

■Wealth led to political sophistication

▪ the Paxons replaced their ancient theocracy with a

parliamentary form of government.
▪ But trade came before civic duty, and no one in Paxos was

willing to devote his life to Parliament.
■ The Paxon Parliament had to function even though

legislators continually wandered in and out of the
parliamentary Chamber

■ How did the Parliament decide on anything?

Features of Paxos Algorithm
■ Invented by Lesie Lamport in 1998.

■ Solves the distributed consensus problem with the following features:

▪ Asynchronous: agents operate at arbitrary speed, messages may take arbitrarily
long to deliver.

▪ Fault-tolerant:
▪ Agents may stop and may restart.
▪ Messages can be duplicated or lost, but never corrupted.
▪ Doesn’t handle Byzantine failure: agents must recover its state after a restart.

■ Properties:

▪ Non-triviality: Only proposed values can be learned.
▪ Safety: At most one value can be learned (i.e., two different learners cannot

learn different values).
▪ Liviness(C;L): If value C has been proposed, then eventually learner L will learn

some value (if sufficient processes remain non-faulty).

Roles in Paxos Algorithm

■ Client: The Client issues a request to the distributed system,
and waits for a response.

■ Proposers: A Proposer advocates a client request, attempting
to convince the Acceptors to agree on it, and acting as a
coordinator to move the protocol forward when conflicts occur.

■Acceptors (voters): acceptors vote on the proposal sent
by Proposers.

■ Learners: Learners act as the replication factor for the
protocol. Once a Client request has been agreed on by the
Acceptors, the Learner may take action (i.e.: execute the
request and send a response to the client).

Paxos: the simplest scenario

Proposer AcceptorAcceptor

Propose
Propose

Accept, v
Accept, v

Commit
Commit

Promise
Promise

Ack
Ack

Phase 1:

Lobby phase

Phase 2:

Vote phase

Phase 3:

Commit phase

Client
Request

Accepted

Ballot Numbers

■To which proposer should an acceptor promise?

■Solution: use ballot numbers to identify proposals

▪ Each proposer has its own ballot numbers
▪ No two proposers can use the same ballot number
▪ Usually: proposer k uses ballot numbers B that B%N=k

■How to reach a consensus?

▪ If a proposal with value V is chosen, all higher numbered

ballots must propose the same value v.

Acceptors in the Lobby Phase
(Phase 1)
■An acceptor does not have to respond to any message

▪ No response has the same effect as lost message.
▪ But it should try to respond in order to make progress.
▪ Denial message can speed up the process if desired.

■Responding a “promise” to a lobby means the acceptors
won’t help proposals with smaller ballot numbers.

■When receiving a proposal with ballot number B:

▪ If the acceptor has promised to a higher numbered ballot ignore ballot B.
▪ Otherwise, it promises to help ballot B, with optional data:

▪ If the acceptor has voted for value V from ballot X, optional data=(V,X)
▪ Otherwise, the optional data is empty.

Vote Phase (Phase 2)

■ If the proposer receives promises from a quorum, it starts
the vote phase

▪ If no promise contains accepted values, send its own value.
▪ If some promise contain accepted values, send the value from

the largest ballot number.
■ If it does not receive enough promises

▪ Give up, accept (later), or
▪ Propose a higher numbered ballot, probably after a back-off time

is passed.
■An acceptor accepts value from ballot B that it promised

to help, unless it has promised to help a higher numbered
ballot.

Commit Phase (Phase 3)

■If proposer receives ack messages from majority
of acceptors

▪ Send commit message to ALL participants.

■If acceptors receives commit

▪ Done=true

▪ Agreement reached; agreed-on value is v.

■Accepted values are sent to learners and
clients.

To be discussed

■Multiple proposers

■Live lock: two (or more) proposers keep sending

different values with greater ballot numbers.

■Timeout for voted value:

▪ Is it true that once a value is voted, all the process will

eventually agree on this value?

▪ As long as the majority requirement is met, only one value will

be chosen.

▪ Is it possible to vote for different value?

▪ One start more than one Paxos algorithm to vote on different

issue.

Multiple Proposers

■There may be more than one proposer in the
system, each proposing a value for same request

▪ Single proposer can fail

▪ Every node must be willing to become a proposer

■All nodes wait a maximum period (timeout) for
messages they expect

▪ Upon timeout, a node declares itself a proposer and

initiates a new Phase 1 of algorithm.

Multiple Proposers

Proposer P1 Acceptor A2Acceptor A1

Proposal V1
Proposal V1

Accept, v1
Accept, v1

Promise
Promise

Ack

Acceptor A3 Proposer P2

Proposal V2

Proposal V2

PromisePromise

Accept, v2Accept, v2

Ack Ack

Assuming that ballot number issued
by P2 is greater than that of P1.

Multiple Proposers
Proposer P1 Acceptor A2Acceptor A1

Proposal V3
Proposal V3

Accept, v2
Accept, v2

Promise
Promise, (2, v2)

Ack

Acceptor A3 Proposer P2

Commit, v2
Commit, v2

Ack

Commit, v2
Commit, v2

Try
again.

Progress isn’t guaranteed

■ If there are multiple proposers, progress is not
guaranteed.

▪ Proposers may repeatedly propose conflicting values.

■One distinguished proposer can be elected to
propose.

▪ All the proposals are sent to the distinguish proposer first.

■When the distinguish proposer fails, a leader election
algorithm is executed first to elect the new distinguish
proposer.

Back to big data model

Spanner: Globally-Distributed
Database Systems for Google

■Goals:

▪ Managing cross-data center replicated data

▪ Supporting interactive applications for low latency

data processing (Not batch applications)

▪ SQL-like programming language.

New mechanisms in Spanner
■Client-driven replication on database level:

▪ In BigTable, the replications are managed by GFS to share the

load on server.
▪ In Spanner, the replications are driven by application

workloads and managed by Spanner, not GFS.
■Time with uncertainty

▪ Time is given as an interval to contain true time of the event.
▪ Time is synchronized via GPS and atomic clocks around the

world.
▪ These two source of time have different failure models.

Server Organization
■ A Spanner deployment is called a universe.

■ Spanner is organized as a set of zones,

▪ Each zone is the rough analog of a deployment of Bigtable server.
▪ Zones are the unit of administrative deployment.
▪ The set of zones is also the set of locations across which data can be replicated.

Universe Master Placement Driver
Zone 1

Zone Master

Location Proxy

Span Server

Zone 2

Zone Master

Location Proxy

Span Server

Zone N

Zone Master

Location Proxy

Span Server

Span Servers
■ Each span server is responsible for between 100 and 1000 instances of

a data structure called a tablet.

■ Spanner assigns timestamps to data, which is an important way in which

Spanner is more like a multi-version database than a key-value store.

Distributed File Systems
for Hadoop

Assumption on Targeted
Systems and Workloads
■Hardware Failure: Hardware failure is the norm rather than

the exception.

■ Streaming Data Access: Applications that run on HDFS

need streaming access to their data sets.

■ Large Data Sets: Applications that run on HDFS have large

data sets.

■ Simple Coherency Model: HDFS applications need a write-

once-read-many access model for files.

■Moving Computation is Cheaper than Moving Data:

A computation requested by an application is much more efficient
if it is executed near the data it operates on.

■ Portability Across Heterogeneous Hardware and
Software Platforms

Hadoop Distributed File
Systems (HDFS)

■HDFS is highly fault-tolerant and is designed to be
deployed on low-cost hardware. (In other words, not
reliable and can be replaced at any time.)

■HDFS provides high throughput access to application
data and is suitable for applications that have large data
sets.

■HDFS relaxes a few POSIX requirements to enable
streaming access to file system data.

■HDFS was originally built as infrastructure for the
Apache Nutch web search engine project.

Hbase in Hadoop
■HBase is the Hadoop database.

▪ Use it when you need random, realtime read/write access

to your Big Data.

▪ This project's goal is the hosting of very large tables --

billions of rows X millions of columns -- atop clusters of
commodity hardware.

■HBase is an open-source, distributed, versioned,
column-oriented store modeled after Google'
Bigtable.

■HBase provides Bigtable-like capabilities on top of

Hadoop.

HBase
■ HBase provides:

▪ Convenient base classes for backing Hadoop MapReduce jobs with HBase tables
▪ Query predicate push down via server side scan and get filters
▪ Optimizations for real time queries
▪ A high performance Thrift gateway
▪ A REST-ful Web service gateway that supports XML, Protobuf, and binary data encoding

options
▪ Cascading, hive, and pig source and sink modules
▪ Extensible jruby-based (JIRB) shell
▪ Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via

JMX
■ HBase 0.20 (0.95 is the latest version) has greatly improved on its predecessors:

▪ No HBase single point of failure
▪ Rolling restart for configuration changes and minor upgrades
▪ Random access performance on par with open source relational databases such as MySQL.

HDFS Architecture

HDFS Architecture
■ NameNode:

▪ An HDFS cluster consists of a single NameNode, a master server that

manages the file system namespace and regulates access to files by clients.
▪ The NameNode executes file system namespace operations like opening,

closing, and renaming files and directories. It also determines the mapping of
blocks to DataNodes.

■ DataNodes:

▪ The DataNodes are responsible for serving read and write requests from the

file system’s clients. The DataNodes also perform block creation, deletion, and
replication upon instruction from the NameNode.

▪ There are several data nodes in each cluster.
▪ It manages storage attached to the nodes that they run on.
▪ A file is split into one or more blocks and these blocks are stored in a set of

DataNodes.

Big Picture for HBase

Big Picture for HBase

■HRegionServer: used for the write-ahead log

■HMaster will have to perform low-level file

operations

▪ The HMaster is responsible to assign the regions to

each HRegionServer when you start HBase.

HFile

■ Hfiles are the actual storage files, specifically created to serve
one purpose: store HBase's data fast and efficiently.

■ They are apparently based on Hadoop's Tfile and mimic the
SSTable format used in Googles BigTable architecture.

■ The files have a variable length, the only fixed blocks are the
FileInfo and Trailer block.

File Access Flow

■The general flow is that

▪ a new client contacts the Zookeeper quorum (a separate cluster of

Zookeeper nodes) first to find a particular row key.

▪ It does so by retrieving the server name (i.e. host name) that hosts the

-ROOT- region from Zookeeper.

▪ With that information it can query that server to get the server that hosts

the .META. table. Both of these two details are cached and only looked up
once.

▪ Lastly it can query the .META. server and retrieve the server that has the
row the client is looking for.

▪ Once it has been told where the row resides, i.e. in what region, it caches
this information as well and contacts the HRegionServer hosting that
region directly. So over time the client has a pretty complete picture of
where to get rows from without needing to query the .META. server again.

Discussion: GFS vs. Coda

■What’s the difference on targeted system
architecture?

▪ Connectivity between client and servers.

■What’s the challenges of interested?

▪ Performance

▪ Scalability

▪ Availability

▪ Robustness

Summary

■We have learned

▪ the features and services DFS should provide,

▪ the issues of designing DFSs,

▪ File access models,

▪ File-caching models,

▪ File-replication, and

▪ Fault-tolerance.

■We also studied CODA, and BigTable
distributed file system.

Reference

■Hbase Architecture 101 – Storage, http://
www.larsgeorge.com/2009/10/hbase-
architecture-101-storage.html

http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

