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Desirable	Features

■Transparency:	

▪ Structure	transparency	

▪ Access	transparency	

▪ Naming	transparency	

▪ Replication	
transparency	

■User	Mobility	
■Performance

■Simplicity	and	ease	of	
use	

■Scalability	
■High	availability	
■High	reliability	
■Data	integrity	
■Security	
■Heterogeneity



File	Models	–	Unstructured/Structured	
Files

■Unstructured	files:	
▪ A	file	is	an	unstructured	sequence	of	data.	
▪ The	operating	system	is	not	interested	in	the	information	

stored	in	the	files.		
▪ The	interpretation	of	the	meaning	and	structure	of	the	data	

stored	in	the	files	are	entirely	up	to	the	application	programs.		
▪ Who	are	using	this	model:	UNIX	and	DOS.	

■Structured	files:	
▪ Non-indexed	records	
▪ Indexed	records	
▪ This	model	was	planned	to	be	deployed	in	Windows	7.



File	Models:	Mutable/Immutable	Files

■Mutable	file	model:	an	update	overwrites	on	its	old	
contents	to	produce	the	new	contents.	

■Immutable	file	model:		
▪ A	history	of	the	files	or	file	changes	are	stored.	
▪ Pros:	
▪ Easier	to	support	file	caching	and	replication	

▪ Cons:	
▪ Increased	use	of	disk	space	and	
▪ Increased	disk	allocation	activity	

▪ Cedar	File	System,	1988:	
▪ Only	a	limited	number	of	historical	files	are	stored.	
▪ The	users	can	specify	a	historical	file	for	file	access.



File	Access	Models

■How	the	users	access	the	files	depends	on	the	
file	access	models	used	by	the	DFS.	
■Two	factors:	access	method	and	data	units	
▪ the	method	used	for	accessing	remote	files	
▪ Remote	Service	Model:	network	overhead	should	be	
minimized.	
▪ Data-Caching	Model:	concurrence	control	must	be	
considered.	
▪ Hybrid	method:	
▪ LOCUS	and	NFS	use	the	remote	service	model	but	add	caching	for	
better	performance.		
▪ Sprite	uses	the	data-caching	model	but	employs	remote	access	
under	certain	circumstances.



Accessing	Remote	Files	-	Remote	
Service	Model

Pros	and	Cons

Server client
MSG( read(file, 0, 100))

MSG(“This is 100 bytes data from server”)

User Process

read(file, 0, 100) (data)



Accessing	Remote	Files	–	Data-Caching	
Model

Pros	and	Cons	
■Write	operation	may	incur	substantial	overhead.	
■ It	could	reduce	network	traffic,	contention	for	the	network,	and	

contention	for	the	file	servers.

Server client

if cached

User Process

read (file, 0, 100) (data)

Caching “file”

”file”



Class	Discussion

■How	you	determine	the	access	model	for	your	
distributed	file	systems?
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Semantics	of	File	Sharing	(1)

■On	a	single	processor,	when	a	read	follows	a	
write,	the	value	returned	by	the	read	is	the	
value	just	written.	
■In	a	distributed	system	with	caching,	obsolete	
values	may	be	returned.



Semantics	of	File	Sharing	(2)

■ Four	ways	of	dealing	with	the	shared	files	in	a	distributed	system.	
■ UNIX	semantics	is	desirable	for	distributed	file	systems	but	is	difficult	to	

implement	due	to	poor	performance,	poor	scalability,	and	poor	reliability.	
■ Relaxed	semantics	of	file	sharing	are	usually	used.

Method Remark

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically
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File-Caching	Schemes	-	Cache	location
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main memory

client’s 
disk

Server’s 
main memory
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disk

Server’s Main Memory 
• Eliminate the disk access 
• Easy to implement 
• Easy to maintain the consistence 
• May support UNIX file-sharing 

semantics 
• Scalability and reliability are still 

open.
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Client’s 
main memory
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disk
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Server’s 
disk

Client’s Disk 
• Eliminate the network access 
• Reliable 
• Large storage capacity 
• Useful for those system using the file-
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• Access time is still considerable large 

due to the local disk access.



File-Caching	Schemes	-	Cache	location

Client’s 
main memory

client’s 
disk

Server’s 
main memory

Server’s 
disk

Client’s Main Memory 
• Eliminate the disk access and 

network access. 
• Maximum performance gain 
• Not suitable for file-level 

sharing.



File	Cache	vs.	Memory	Cache

■Size:	
▪ Memory	cache	are	located	in	CPU	and	are	limited.	
▪ L1	~	L4:	4KB	~	128MB	(on	Intel	Iris	Pro	Graphics).	

▪ File	cache	are	located	in	memory	or	file	systems	
and	can	be	as	large	as	the	full	file.	

■Impedance	Mismatch	
▪ Memory	access	delay:	local	bus	+	memory	access	
▪ File	access	delay:	communication	(mostly	
network)	+	secondary	storage	access.



File-Caching	Schemes	–	Modification	
Propagation

■Two	design	issues:	
▪ When	to	propagate	modifications?		
▪ How	to	verify	the	validity	of	cached	data?		

■The	modification	propagation	scheme	used	has	a	
critical	effect	on	the	system’s	performance.	

■Write-Through	Scheme	
▪ The	new	value	is	immediately	sent	to	the	server.	
▪ It	has	high	reliability	and	suitability	for	UNIX-like	
semantics	and	poor	write	performance.	

▪ Only	suitable	for	fairly	large	read-to-write	ratio.

How	to	propagate	the	modified	
data?
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■The	modification	propagation	scheme	used	has	a	
critical	effect	on	the	system’s	performance.	

■Write-Through	Scheme	
▪ The	new	value	is	immediately	sent	to	the	server.	
▪ It	has	high	reliability	and	suitability	for	UNIX-like	
semantics	and	poor	write	performance.	

▪ Only	suitable	for	fairly	large	read-to-write	ratio.



Delay-Write	Scheme

■Delay-Write	Scheme	
▪ When	the	cache	is	modified,	the	new	value	is	written	
only	to	the	cache	and	the	client	only	makes	a	note	that	
the	cache	entry	has	been	updated.		

▪ All	updated	cache	entries	corresponding	to	a	file	are	
gathered	together	and	sent	to	the	server	at	a	time.	

■Different	types	of	writing	back	
▪ Write	on	ejection	from	cache	
▪ Periodic	write	
▪ Write	on	close	

■It	improves	the	performance	but	may	suffer	from	
reliability	problem.
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File	Replication-		
What’s	the	difference	between	caching	and	replication?	

■A	replica	is	associated	with	a	server;	a	cache	is	
normally	associated	with	a	client.
■A	replica	exists	to	improve	the	availability	and	
performance;	the	existence	of	a	cache	
depends	on	the	locality	in	file	access	pattern.	
▪ We	barely	discuss	caching	for	DSM.	Can	you	think	
of	the	reasons?

■A	replica	is	more	persistent	than	a	cache.
■A	cached	copy	is	contingent	upon	a	replica.
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Multicopy	Update	Problem	(1)

■ Read-Only	Replication
▪ Allows	the	replication	of	only	immutable	files.	
▪ Is	suitable	for	frequently	read	and	modified	only	once	in	a	while,	

such	as	object	codes	of	the	system	programs	and	reverse-indexed	
web	search	database.	

■ Read-Any-Write-All	Protocol
▪ Allows	the	replication	of	both	immutable	and	mutable	files.
▪ Requires	to	read	any	copy	of	the	replicated	files	and	to	write	to	all	

copies	of	the	replicated	files.	
▪ Requires	lock	to	perform	the	write	operations.

■ Available-Copies	Protocol
▪ Allows	to	write	on	“available”	copies.
▪ Does	not	prevent	inconsistence	in	the	presence	of	communication	

failure.
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Secondary	copies	are	updated	later.	



Multicopy	Update	Problem	(2)

■Primary-Copy	Protocol	
▪ Each	file	has	one	primary	copy	and	several	
secondary	copies.	

▪ Write	operations	are	done	on	primary	copy;	
Secondary	copies	are	updated	later.	

■Quorum-Based	Protocol:	
▪ Read-any-write-all	and	available-copies	suffer	
from	the	network	partition	problem.	

▪ We	may	increase	the	availability	at	the	expense	of	
read	operations.
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7Notice that the combination of quorum 
changes from time to time so the protocol 
can maintain the consistence.

Read operation: 
-Retrieve a read quorum (any r copies) of F. 
-Of the r copies retrieved, select the copy with the 
largest version number. 
-Perform the read operation on the selected copy.
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Write Quorum 
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Notice that the combination of 
quorum changes from time to time so 
the protocol can maintain the 
consistence.

Write operation: 
-Retrieve a write operation (any w copies) of F. 
-Of the w copies retrieved, get the version number of 
the copy with the largest version number. 
-Increment the version number. 
-Write the new value and the new version number to all 
the w copies of the write quorum. 



Fault	Tolerance

■What	kind	of	failures	are	subtle	to	distributed	
file	systems?		
▪ A	server	loses	the	contents	of	its	main	memory	in	
the	event	of	a	crash.	

▪ During	a	request	processing,	the	server	or	client	
may	crash,	resulting	in	the	loss	of	state	
information	of	the	file	being	accessed.	

▪ Transient	faults	caused	by	electromagnetic	
fluctuations	

▪ Decay	of	disk	storage	device



Effect	of	Service	Paradigm	on	Fault	Tolerance	
Stateful	File	Servers	vs.	Stateless	File	Servers

■ Stateful	IO	Functions:	
▪ fid = Open( filename, mode ) 
▪ read( fid, n, buffer ), write(fid, n, buffer), 
seek( fid, position), and  

▪ close( fid ). 
■ Stateless	IO	Functions:	
▪ read( filename, position, buffer ) 
▪ write( filename, position, buffer) 

■ State	information	shall	be	maintained	for	a	certain	amount	of	
time,	which	is	called	session.	

■ A	session	starts	with	open()	and	ends	with	close(). 
■ Stateful	service	requires	complex	crash	recovery	procedures.



But,	there	is	no	free	lunch.

■ Stateless	services	have	the	following	constraints:	
▪ Each	file	should	have	a	system-wide	low-level	name	associated	with	it.		
▪ Operations	including	read,	write	and	delete	files	on	stateless	servers	

have	to	be	idempotent	to	protect	the	server	from	duplicate	requests.	
■ Stateless	services	suffer	from	
▪ longer	request	messages	and	
▪ slower	processing	of	requests.	

■ In	some	cases,	stateful	service	becomes	necessary.	
▪ The	packets	transmitted	over	the	network	may	be	received	out	of	its	

sending	order.		
▪ State	info	will	be	useful	to	maintain	the	correct	order.



Case	Study:	CODA	File	System



Coda

■Coda:	descendent	of	the	Andrew	file	system	at	
CMU	
▪ Andrew	designed	to	serve	a	large	(global)	community.	
▪ Started	in	1987,	and	the	last	change	was	in	2011.	

■Salient	features:	
▪ Support	for	disconnected	operations		
▪ Desirable	for	mobile	users	

▪ Support	for	a	large	number	of	users	
▪ Not	support	for		
▪ highly	concurrent	and		
▪ fine	granularity	data	access.



Overview	of	Coda	

■ Centrally	administered	Vice	file	servers	
■ Large	number	of	virtue	clients
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Virtue:	Coda	Clients

■ The	internal	organization	of	a	Virtue	workstation.	
▪ Designed	to	allow	access	to	files	even	if	server	is	unavailable	
▪ Uses	VFS	and	appears	like	a	traditional	Unix	file	system			



Communication	in	Coda

■ Coda	uses	RPC2:	a	sophisticated	reliable	RPC	system	
▪ Start	a	new	thread	for	each	request,	server	periodically	informs	client	it	is	still	working	

on	the	request.	
■ RPC2	supports	side-effects:	application-specific	protocols	

▪ Useful	for	video	streaming	[where	RPCs	are	less	useful]	
■ RPC2	also	has	multicast	support.



Communication:	Invalidations

a) Sending	an	invalidation	message	one	at	a	time	using	traditional	
RPC.	

b) Sending	invalidation	messages	in	parallel	using	RPC2.
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Naming

■ Clients	in	Coda	have	access	to	a	single	shared	name	space	
■ Files	are	grouped	into	volumes	[partial	sub-tree	in	the	directory	structure]	

▪ Volume	is	the	basic	unit	of	mounting	
▪ Namespace:	/afs/filesrv.csie.ntu.edu.tw				[same	namespace	on	all	clients]	
▪ Name	lookup	can	cross	mount	points:	support	for	detecting	crossing	and	automounts	

■ Volumes	is	the	unit	for	server-side	replication.



File	Identifiers

■ Each	file	in	Coda	belongs	to	exactly	one	volume	
▪ Volume	may	be	replicated	across	several	servers	
▪ Multiple	logical	(replicated)	volumes	map	to	the	same	physical	volume		
▪ 96	bit	file	identifier	=		32	bit	RVID	+	64	bit	file	handle

1

2
3



Sharing	Files	in	Coda

■ Transactional	behavior	for	sharing	files:	similar	to	share	reservations	in	NFS	
▪ File	open:	transfer	entire	file	to	client	machine	[similar	to	delegation]	
▪ Uses	session	semantics:	each	session	is	like	a	transaction	

▪ Updates	are	sent	back	to	the	server	only	when	the	file	is	closed



Transactional	Semantics

■ Network	partition:	part	of	network	isolated	from	rest	
▪ Allow	conflicting	operations	on	replicas	across	file	partitions	
▪ Reconcile	upon	reconnection	
▪ Transactional	semantics	=>	operations	must	be	serializable	
▪ Ensure	that	operations	were	serializable	after	they	have	executed	
▪ Conflict	=>	force	manual	reconciliation	

■ Knowing	the	metadata	for	each	session	makes	it	easier	for	CODA	to	recognize	
the	conflicts.	

File-associated data Read? Modified?

File identifier Yes No

Access rights Yes No

Last modification time Yes Yes

File length Yes Yes

File contents Yes Yes

Metadata for store session in Coda



Serializability

Possible	schedules

BEGIN_TRANSACTION 
  x = 0; 
  x = x + 1; 
END_TRANSACTION

BEGIN_TRANSACTION 
  x = 0; 
  x = x + 2; 
END_TRANSACTION

BEGIN_TRANSACTION 
  x = 0; 
  x = x + 3; 
END_TRANSACTION

Schedule 1 x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3 ?

Schedule 2 x = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3; ?

Schedule 3 x = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3; ?

Transactions T1, T2, and T3

● A schedule is serial if the actions of the different 
transactions are not interleaved; they are executed one 
after another 

● A schedule is serializable if its effect is the same as that of 
some serial schedule 



Conflicts	Across	Partitions

■ Two	important	observations:	
▪ A	Venus	process	knows	which	data	to	fetch	from	the	server	at	the	start	

of	a	session.	So,	it	can	acquire	the	necessary	locks	at	the	start	of	a	
session.	

▪ Two-phase	locking	(2PL)	is	used.	So,	all	result	schedules	are	
serializable.	



Two-Phase	Locking

■Lock	the	data	when	read/write.	
■(Non-Strict)	Two-Phase	Locking:		
▪ If	a	transaction	T	wants	to	read/write	an	object,	it	must	
request	a	shared/exclusive	lock	on	the	object.		

▪ A	transaction	cannot	request	additional	locks	on	an	object	
once	it	releases	any	lock,	and	it	can	release	locks	at	any	
time.	

If anything will go wrong, it will.  
-- Murphy's Laws 

In nature, nothing is ever right. Therefore, if everything is going 
right ... something is wrong. 



Two-Phase	Locking

■Two-phase	locking.



Testing	for	Serializability:	Serialization	
Graphs

■ Input:	Schedule	S	for	set	of	transactions	T1,	T2,	…,	Tk.	
■Output:	Determination	whether	S	is	serializable.	
■Method:	
▪ Create	serialization	graph	G:	
▪ Nodes:	correspond	to	transactions	
▪ Arcs:	G	has	an	arc	from	Ti	to	Tj	if	there	is	a	Ti:UNLOCK(Am)	operation	
followed	by	a	Tj:LOCK(Am)	operation	in	the	schedule.	

▪ Perform	topological	sorting	of	the	graph.	
▪ If	graph	has	cycles,	then	S	is	not	serializable.	 	
▪ If	graph	has	no	cycles,	then	topological	order	is	a	serial	order	for	
transactions.



Testing	for	Serializability:	Serialization	
Graphs

■ Input:	Schedule	S	for	set	of	transactions	T1,	T2,	…,	Tk.	
■Output:	Determination	whether	S	is	serializable.	
■Method:	
▪ Create	serialization	graph	G:	
▪ Nodes:	correspond	to	transactions	
▪ Arcs:	G	has	an	arc	from	Ti	to	Tj	if	there	is	a	Ti:UNLOCK(Am)	operation	
followed	by	a	Tj:LOCK(Am)	operation	in	the	schedule.	

▪ Perform	topological	sorting	of	the	graph.	
▪ If	graph	has	cycles,	then	S	is	not	serializable.	 	
▪ If	graph	has	no	cycles,	then	topological	order	is	a	serial	order	for	
transactions.

A	topological	sort	of	a	directed	
graph	is	a	linear	ordering	of	

its	vertices	such	that	for	every	
directed	edge	uv	from	vertex	u	to	
vertex	v,	u	comes	before	v	in	the	

ordering.	

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Vertex_(graph_theory)


Serializability	of	Two-Phase	Locking

■Theorem:	If	S	is	any	schedule	of	two-phase	
transactions,	then	S	is	serializable.	
■Proof:	
▪ Suppose	not.	Then	the	serialization	graph	G	for	S	
has	a	cycle,	Ti1	->	Ti2	->	…	->	Tip	->	Ti1	

▪ Therefore,	a	lock	by	Ti1	follows	an	unlock	by	Ti1,	
contradicting	the	assumption	that	Ti1	is	two-
phase.



Transactions	that	read	‘dirty	‘	data

■ Assume	that	T1	fails	after	(13).	
▪ T1	still	holds	lock	on	B.	
▪ Value	read	by	T2	at	step	(8)	is	
wrong.	

■ T2	must	be	rolled	back	and	
restarted.	
▪ Some	transaction	T3	may	have	

read	value	of	A	between	steps	(13)	
and	(14)

(1)  LOCK A 
(2)  READ A 
(3)  A:=A-1 
(4)  WRITE A 
(5)  LOCK B 
(6)  UNLOCK A 
(7)    LOCK A 
(8)    READ A 
(9)    A:=A*2 
(10)  READ B 
(11)    WRITE A 
(12)    COMMIT 
(13)    UNLOCK A 
(14)  B:=B/A 

 T1       T2



Strong	Strict	Two-Phase	Locking
■ Transaction	may	be	aborted	because	of	conflicts	during	

shrinking	phase	
■ Strong	Strict	two-phase	locking:	locks	are	released	after	the	

transactions	are	committed.



Prove	serializability	with	SS2PL

■A	serializable	schedule	contain	no	read/write	and	
write/write	conflicts	in	the	schedule.		

■2PL	assures	that	at	most	one	transaction	can	write	
on	one	data	item.	

■Proof	by	contradiction:	
▪ Suppose	there	is	a	unserializable	schedule	following	SS2PL.	
▪ There	must	be	a	read/write	or	write/write	conflict	in	the	schedule.	
▪ However,	SS2PS	assures	that	there	is	at	most	one	transaction	to	
read	or	write	a	data	item.	

▪ The	assumption	is	contradicted.	



Conflicts	Across	Partitions

■ A	file	version	system	is	used	to	solve	conflicts.	
▪ In	a	partition,	the	operations	are	executed	as	if	nothing	happened.	
▪ When	reconnected,	updates	are	transferred	to	the	server	in	the	same	

order	as	they	took	place	at	the	client.		
▪ Version	number	is	used	to	solve	the	conflicts.		
▪ A	update	is	accepted	if	and	only	if	

Current version number + 1 = Last version number on the client + numbers of 
successful update during the session on the server.



Discussion:	Replica	Control

■Replica	of	file	servers	are	kept	to	improve	the	
availability	of	the	system.	However,	the	
network	may	be	partitioned	into	sub-
networks	from	time	to	time.	
■Pessimistic	vs.	Optimistic	replica	control	
▪ Pessimistic:	make	sure	no	one	is	accessing	the	file.	
▪ Optimistic:			read/write	the	file	and	solve	the	
conflict	later.	

■Which	strategy	is	better	for	CODA?	
▪ Think	about	the	assumption	for	CODA.



Server	Replication

■ Use	replicated	writes:	read-once	write-all	
▪ Writes	are	sent	to	all	AVSG	(all	accessible	replicas)	

■ How	to	handle	network	partitions?	
▪ Use	optimistic	strategy	for	replication		
▪ Detect	conflicts	using	a	Coda	version	vector			
▪ Example:	[2,2,1]	and	[1,1,2]	is	a	conflict	=>	manual	reconciliation

[2,2,1]

[2,2,1]

[1,1,2]



Client	Caching

■ Cache	consistency	maintained	using	callbacks	
▪ Server	tracks	all	clients	that	have	a	copy	of	the	file	[provide	callback	promise]	
▪ Upon	modification:	send	invalidate	to	clients	
▪ No	file	transfer	is	need	when	callback	promise	holds.



Disconnected	Operation

■ The	state-transition	diagram	of	a	Coda	client	with	respect	to	a	volume.	
■ Use	hoarding	to	provide	file	access	during	disconnection	

▪ Prefetch	all	files	that	may	be	accessed	and	cache	(hoard)	locally	
▪ If	AVSG=0,	go	to	emulation	mode	and	reintegrate	upon	reconnection



Caching	Management

■ Cache	space	is	finite	and	CODA	caches	entire	file	not	parts	of	the	
files.	
▪ Caching	parts	of	the	files	is	difficult	to	support	disconnected	services.	

■ Prioritized	cache	management:	
▪ The	users	specify	the	priority	of	the	files	and	directories	to	construct	hoard	

database	(HDB).	
▪ Priority	also	changes	from	time	to	time	based	on	use	history.	
▪ Less	critical	files	are	removed.	
▪ Hierarchical	cache	management	allows	the	system	to	resolve	the	pathname	of	

a	cached	object	while	disconnected.	
■ Hoarding	walk:	

▪ A	cache	is	in	equilibrium	when	no	un-cached	object	has	a	higher	priority	than	
cached	objects.	

▪ Venus	periodically	restore	equilibrium	by	performing	hoard	walk.



BigTable	and	Google	File	
Systems	(GFS)



BigTable	and	Google	File	Systems	
(GFS)

■ Fay	Chang,	Jeffrey	Dean,	Sanjay	Ghemawat,	Wilson	C.	Hsieh,	
Deborah	A.	Wallach,	Mike	Burrows,	Tushar	Chandra,	Andrew	
Fikes,	and	Robert	E.	Gruber.	2008.	Bigtable:	A	Distributed	
Storage	System	for	Structured	Data.	ACM	Trans.	Comput.	
Syst.	26,	2,	Article	4	(June	2008),	26	pages.		

■ Sanjay	Ghemawat,	Howard	Gobioff,	and	Shun-Tak	Leung.	
2003.	The	Google	file	system.	In	Proceedings	of	the	nineteenth	
ACM	symposium	on	Operating	systems	principles	(SOSP	'03).	
ACM,	New	York,	NY,	USA,	29-43.		

■ Jeffrey	Dean	and	Sanjay	Ghemawat.	2008.	MapReduce:	
simplified	data	processing	on	large	clusters.	Commun.	ACM	
51,	1	(January	2008),	107-113.	



Motivation

■Lots	of	(semi-)structured	data	at	Google	
▪ URLs:	
▪ Contents,	crawl	metadata,	links,	anchors,	pagerank,	…	

▪ Per-user	data:	
▪ User	preference	settings,	recent	queries/search	results,	…	

▪ Geographic	locations:	
▪ Physical	entities	(shops,	restaurants,	etc.),	roads,	satellite	image	
data,	user	annotations,	…	

■Scale	is	large	
▪ Billions	of	URLs,	many	versions/page	(~20K/version)	
▪ Hundreds	of	millions	of	users,	thousands	of	q/sec	
▪ 100TB+	of	satellite	image	data



How	About	Commercial	DB?

■Scale	is	too	large	for	most	commercial	databases	
■Even	if	it	weren’t,	cost	would	be	very	high	
▪ Building	internally	means	system	can	be	applied	across	
many	projects	for	low	incremental	cost	

■Low-level	storage	optimizations	help	performance	
significantly	
▪ Much	harder	to	do	when	running	on	top	of	a	database	layer



Goals

■Want	asynchronous	processes	to	be	continuously	
updating	different	pieces	of	data	
▪ Want	access	to	most	current	data	at	any	time	

■Need	to	support:	
▪ Very	high	read/write	rates	(millions	of	ops	per	second)	
▪ Efficient	scans	over	all	or	interesting	subsets	of	data	
▪ Efficient	joins	of	large	one-to-one	and	one-to-many	
datasets	

■Often	want	to	examine	data	changes	over	time	
▪ E.g.	Contents	of	a	web	page	over	multiple	crawls



BigTable:	a	distributed	storage	system	

■BigTable	is	a	distributed	storage	system	for	
managing	(semi-)structured	data.	

■Designed	to	scale	to	a	very	large	size	
▪ Petabytes	of	data	across	thousands	of	servers	

■Used	for	many	Google	projects	
▪ Web	indexing,	Personalized	Search,	Google	Earth,	Google	
Analytics,	Google	Finance,	…	

■Flexible,	high-performance	solution	for	all	of	
Google’s	products



Features	of	BigTable

■Distributed	multi-level	map	for	MapReduce	
applications	

■Fault-tolerant	and	persistent	
■Scalable	
▪ Thousands	of	servers	
▪ Terabytes	of	in-memory	data	
▪ Petabyte	of	disk-based	data	
▪ Millions	of	reads/writes	per	second,	efficient	scans	

■Self-managing	
▪ Servers	can	be	added/removed	dynamically	
▪ Servers	adjust	to	load	imbalance



Building	Blocks

■Building	blocks:	
▪ GFS:	raw	storage	to	store	persistent	data	
(SSTable	file	format	for	storage	of	data)	
▪ Scheduler:	schedules	jobs	on	machines	
involved	in	BigTable	serving	
▪ Chubby	Lock	service:	master	election,	location	
bootstrapping,	which	is	a	distributed	lock	
manager.		
▪Map	Reduce:	simplified	large-scale	data	
processing	and	often	used	to	read/write	
BigTable	data
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• Master manages metadata 
• Data transfers happen directly between clients/chunkservers 
• Files broken into chunks (typically 64 MB) 
• Chunks triplicated across three machines for safety 

Google	File	System	(GFS)



Google	File	System

■Large-scale	distributed	“file	system”	
■Master:	responsible	for	metadata	
■Chunk	servers:	responsible	for	reading	and	writing	
large	chunks	of	data	
▪ Chunks	replicated	on	3	machines,	master	responsible	for	
ensuring	replicas	exist	

▪ Chubby:	
▪ {lock/file/name}	service	
▪ Coarse-grained	locks,	can	store	small	amount	of	data	in	a	lock.
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Chubby	-	Lock	Services	in	GFS

■When	there	are	number	of	replicas	located	at	
various	locations,	lock	and	consensus	are	
mandatory.	
■3	to	5	replicas,	need	a	majority	vote	to	be	
active	
■OSDI	’06	Paper	

■Link



Basic	Data	Model

■A	BigTable	is	a	sparse,	distributed	persistent	multi-
dimensional	sorted	map	

(row,	column,	timestamp)	->	cell	contents	

■Good	match	for	most	Google	applications



WebTable	Example

■Want	to	keep	copy	of	a	large	collection	of	web	pages	and	
related	information	

■ Use	URLs	as	row	keys	
■ Various	aspects	of	web	page	as	column	names	
■ Store	contents	of	web	pages	in	the	contents:	column	

under	the	timestamps	when	they	were	fetched.



Rows

■Name	is	an	arbitrary	string	
▪ Access	to	data	in	a	row	is	atomic	
▪ Row	creation	is	implicit	upon	storing	data	

■Rows	ordered	lexicographically	
▪ Rows	close	together	lexicographically	usually	on	one	or	a	
small	number	of	machines	

■Example:		
 math.gatech.edu, math.uga.edu, phys.gatech.edu, phys.uga.edu  
 VS  
 edu.gatech.math, edu.gatech.phys, edu.uga.math, edu.uga.phys



Columns

■Columns	have	two-level	name	structure:	
▪ family:optional_qualifier	

■Column	family	
▪ Unit	of	access	control	
▪ Has	associated	type	information	

■Qualifier	gives	unbounded	columns	
▪ Additional	levels	of	indexing,	if	desired



Timestamps

■ Used	to	store	different	versions	of	data	in	a	cell	
▪ New	writes	default	to	current	time,	but	timestamps	for	writes	can	also	be	set	

explicitly	by	clients	
■ Lookup	options:	

▪ “Return	most	recent	K	values”	
▪ “Return	all	values	in	timestamp	range	(or	all	values)”	

■ Column	families	can	be	marked	w/	attributes:	
▪ “Only	retain	most	recent	K	values	in	a	cell”	
▪ “Keep	values	until	they	are	older	than	K	seconds”



Data	Structure	for	BigTable

■BigTable	is	a	large	map	that	is	indexed	by	a	row	
key,	column	key,	and	a	timestamp.		
■A	map	is	an	associative	array;		
▪ a	data	structure	that	allows	one	to	look	up	a	value	to	
a	corresponding	key	quickly.		

▪ BigTable	is	a	collection	of	(key,	value)	pairs	where	the	
key	identifies	a	row	and	the	value	is	the	set	of	
columns.	

▪ Each	value	within	the	map	is	an	array	of	bytes	that	is	
interpreted	by	the	application



Multidimensional	Table	

■A	table	is	indexed	by	rows.		
■Each	row	contains	one	or	more	named	
column	families.		
■Within	a	column	family,	one	may	have	one	or	
more	named	columns.	
■Time	is	another	dimension	in	BigTable	data.	
Every	column	family	may	keep	multiple	
versions	of	column	family	data.



	 com.cnn.www"	:	{	 	 //	row	
	 	 ”anchor"	:	{	 	 	 //	column	family	
	 	 ”cnnsi.com":	”CNN",	 	 //	column	
	 	 ”my.look.ca":	”CNN.com",	 	 //	column	
	 }	
	 ”contents"	:	{	 	 	 	 //	another	column	family	
	 	 ""	:	“<html>...</html>"	 	 //	column	(null	name)	
	 }	
}



Adding	Timestamp

	 com.cnn.www"	:	{	 	 //	row	
	 	 ”anchor"	:	{	 	 	 //	column	family	
	 	 ”cnnsi.com":	{	
	 	 	 “2010/01/01:00:00:00”:	”CNN",	 	 //	
column	
	 	 	 “2012/04/01:00:00:00”:	”CNNSI",	 	 //	
column	
	 	 ”my.look.ca":	”CNN.com",	 	 //	column	
	 }	
	 ”contents"	:	{	
	 	 “2010/01/01:00:00:00”:{	 	 //	another	column	family	
	 	 ""	:	“<html>...</html>"	 	 //	column	(null	name)	
	 	 }	
	 	 “2012/04/01:00:00:00”:{	 	 //	another	column	family	
	 	 ""	:	“<html>...</html>"	 	 //	column	(null	name)	
	 	 }	
	 }	
}



Relational	database	vs.	BigTable

Relational	DB BigTable

Database BigTable

Table Column	Family

Primary	Key Row

B-Tree	Node Tablet

Transaction Atomic	Row	Update

Schema Column	Family	Schema



Table

■ Multiple	tablets	make	up	the	table	
■ SSTables	can	be	shared	
■ Tablets	do	not	overlap,	SSTables	can	overlap

SSTable SSTable SSTable SSTable

Tablet

aardvark apple
Tablet

apple_two_E boat



Tablets

■Large	tables	broken	into	tablets	at	row	boundaries	
▪ Tablet	holds	contiguous	range	of	rows	
▪ Clients	can	often	choose	row	keys	to	achieve	locality	

▪ Aim	for	~100MB	to	200MB	of	data	per	tablet	
■Serving	machine	responsible	for	~100	tablets	
▪ Fast	recovery:	
▪ 100	machines	each	pick	up	1	tablet	for	failed	machine	

▪ Fine-grained	load	balancing:	
▪ Migrate	tablets	away	from	overloaded	machine	
▪ Master	makes	load-balancing	decisions



SSTables

■ Tablets	are	built	out	of	multiple	SSTables	
■ SSTable:	
▪ Immutable,	sorted	file	of	key-value	pairs	
▪ Chunks	of	data	plus	an	index,	which	is	of	block	ranges,	not	values

Index

64K 
block

64K 
block

64K 
block

SSTable

Index

64K 
block

64K 
block

64K 
block

SSTable

Tablet Start:aardvark End:apple



Implementation	–	Three	Major	
Components

■Library	linked	into	every	client	
■One	master	server	
▪ Responsible	for:	
▪ Assigning	tablets	to	tablet	servers	
▪ Detecting	addition	and	expiration	of	tablet	servers	
▪ Balancing	tablet-server	load	
▪ Garbage	collection	

■Many	tablet	servers	
▪ Tablet	servers	handle	read	and	write	requests	to	its	table	
▪ Splits	tablets	that	have	grown	too	large



Typical	Cluster

Cluster Scheduling Master Lock Service GFS Master

Machine 1

Scheduler 
Slave

GFS 
Chunkserver

Linux

User 
Task

Machine 2

Scheduler 
Slave

GFS 
Chunkserver

Linux

User 
Task

Machine 3

Scheduler 
Slave

GFS 
Chunkserver

Linux

Single Task

BigTable 
Server

BigTable 
Server BigTable Master



Implementation	(cont.)

■Client	data	doesn’t	move	through	master	
server.		Clients	communicate	directly	with	
tablet	servers	for	reads	and	writes.	
■Most	clients	never	communicate	with	the	
master	server,	leaving	it	lightly	loaded	in	
practice.



Tablet	Location

■Since	tablets	move	around	from	server	to	
server,	given	a	row,	how	do	clients	find	the	
right	machine?	
▪ Need	to	find	tablet	whose	row	range	covers	the	
target	row



Tablet	Assignment

■Each	tablet	is	assigned	to	one	tablet	server	at	
a	time.	
■Master	server	keeps	track	of	the	set	of	live	
tablet	servers	and	current	assignments	of	
tablets	to	servers.		Also	keeps	track	of	
unassigned	tablets.	
■When	a	tablet	is	unassigned,	master	assigns	
the	tablet	to	an	tablet	server	with	sufficient	
room.
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• Master manages metadata 
• Data transfers happen directly between clients/chunkservers 
• Files broken into chunks (typically 64 MB) 
• Chunks triplicated across three machines for safety 

Google	File	System	(GFS)



Chubby	Lock	service

■The	lock	service	must	be		
▪ Available:	the	show	must	go	on	even	if	one	lock	
server	is	down	

▪ Consistent:	multiple	lock	servers	must	have	the	
same	data.	

▪ Fault-Tolerant:	disk	crash,	message	loss/delay,	
servers	goes	down/up	

■Chubby	is	Google’s	distributed	lock	service	
using	the	Paxos	consensus	algorithm.



Consensus	Problem

■ Consensus	problem:	reaching	agreement	among	a	collection	
of	N	processes	that	can	propose	values	
▪ Each	process	can	have	a	value	V[i],	i=1,	…,	M	
▪ At	the	end	of	the	consensus	algorithm,	every	process	has	chosen	the	

same	value	V[k]	for	some	k	in	1,	…,	M.	
▪ Cannot	choose	more	than	1	value	or	non-proposed	value.	
▪ Cannot	learn	that	a	value	is	chosen	until	it	is	actually	chosen.	

■ A	hard	problem	in	the	presence	of	failures	
▪ Crash	failure:	processes	may	crash	and	recover,	disks	may	get	

corrupted.	
▪ Omission	failures:	messages	may	be	lost	
▪ Byzantine	failures:	processes	may	lie



Terminology

■ Value:	any	computer	datum	(e.g.,	integer,	string)	
■ Process:	a	program	that	participates	in	the	algorithm.	
■ Consensus:	a	value	agreed	by	a	collection	of	processes.	
■ Quorum:	absolute	majority	of	processes	agreeing	on	a	value	
■ Consensus	algorithm:	an	algorithm	that	produces	a	

consensus	from	a	collection	of	processes.	
■ Safety:	the	algorithm	never	goes	into	an	illegal	state	(e.g.,	

data	consistency	is	maintained	across	processes.)	
■ Liviness:	algorithm	makes	progress.



Paxos	Parliament:	Part-time	
Parliament

■ Early	in	this	millennium,	the	Aegean	island	of	
Paxos	was	a	thriving	mercantile	center.	

■Wealth	led	to	political	sophistication	
▪ the	Paxons	replaced	their	ancient	theocracy	with	a	

parliamentary	form	of	government.	
▪ But	trade	came	before	civic	duty,	and	no	one	in	Paxos	

was	willing	to	devote	his	life	to	Parliament.	
■ The	Paxon	Parliament	had	to	function	even	

though	legislators	continually	wandered	in	and	
out	of	the	parliamentary	Chamber	

■ How	did	the	Parliament	decide	on	anything?



Features	of	Paxos	Algorithm

■ Invented	by	Lesie	Lamport	in	1998.	
■ Solves	the	distributed	consensus	problem	with	the	following	features:	

▪ Asynchronous:	agents	operate	at	arbitrary	speed,	messages	may	take	
arbitrarily	long	to	deliver.	

▪ Fault-tolerant:	
▪ Agents	may	stop	and	may	restart.	
▪ Messages	can	be	duplicated	or	lost,	but	never	corrupted.	
▪ Doesn’t	handle	Byzantine	failure:	agents	must	recover	its	state	after	a	restart.	

■ Properties:	
▪ Non-triviality:	Only	proposed	values	can	be	learned.	
▪ Safety:	At	most	one	value	can	be	learned	(i.e.,	two	different	learners	cannot	

learn	different	values).	
▪ Liviness(C;L):	If	value	C	has	been	proposed,	then	eventually	learner	L	will	learn	

some	value	(if	sufficient	processes	remain	non-faulty).



Roles	in	Paxos	Algorithm

■ Client:	The	Client	issues	a	request	to	the	distributed	system,	
and	waits	for	a	response.	

■ Proposers:	A	Proposer	advocates	a	client	request,	
attempting	to	convince	the	Acceptors	to	agree	on	it,	and	
acting	as	a	coordinator	to	move	the	protocol	forward	when	
conflicts	occur.	

■ Acceptors	(voters):		acceptors	vote	on	the	proposal	sent	by	
Proposers.	

■ Learners:	Learners	act	as	the	replication	factor	for	the	
protocol.	Once	a	Client	request	has	been	agreed	on	by	the	
Acceptors,	the	Learner	may	take	action	(i.e.:	execute	the	
request	and	send	a	response	to	the	client).



Paxos:	the	simplest	scenario

Proposer AcceptorAcceptor

Propose
Propose

Accept, v
Accept, v

Commit
Commit

Promise
Promise

Ack
Ack

Phase 1: 
Lobby phase

Phase 2: 
Vote phase

Phase 3: 
Commit phase

Client

Request

Accepted



Ballot	Numbers	

■To	which	proposer	should	an	acceptor	promise?	
■Solution:	use	ballot	numbers	to	identify	proposals	
▪ Each	proposer	has	its	own	ballot	numbers	
▪ No	two	proposers	can	use	the	same	ballot	number	
▪ Usually:	proposer	k	uses	ballot	numbers	B	that	B%N=k	

■How	to	reach	a	consensus?	
▪ If	a	proposal	with	value	V	is	chosen,	all	higher	numbered	
ballots	must	propose	the	same	value	v.



Acceptors	in	the	Lobby	Phase	(Phase	1)

■An	acceptor	does	not	have	to	respond	to	any	message	
▪ No	response	has	the	same	effect	as	lost	message.	
▪ But	it	should	try	to	respond	in	order	to	make	progress.	
▪ Denial	message	can	speed	up	the	process	if	desired.	

■Responding	a	“promise”	to	a	lobby	means	the	acceptors	
won’t	help	proposals	with	smaller	ballot	numbers.	

■When	receiving	a	proposal	with	ballot	number	B:	
▪ If	the	acceptor	has	promised	to	a	higher	numbered	ballot	ignore	ballot	B.	
▪ Otherwise,	it	promises	to	help	ballot	B,	with	optional	data:	

▪ If	the	acceptor	has	voted	for	value	V	from	ballot	X,	optional	data=(V,X)	
▪ Otherwise,	the	optional	data	is	empty.



Vote	Phase	(Phase	2)

■ If	the	proposer	receives	promises	from	a	quorum,	it	starts	
the	vote	phase	
▪ If	no	promise	contains	accepted	values,	send	its	own	value.	
▪ If	some	promise	contain	accepted	values,	send	the	value	from	the	
largest	ballot	number.	

■ If	it	does	not	receive	enough	promises	
▪ Give	up,	accept	(later),	or		
▪ Propose	a	higher	numbered	ballot,	probably	after	a	back-off	time	is	
passed.	

■An	acceptor	accepts	value	from	ballot	B	that	it	promised	to	
help,	unless	it	has	promised	to	help	a	higher	numbered	
ballot.



Commit	Phase	(Phase	3)

■If	proposer	receives	ack	messages	from	
majority	of	acceptors	
▪ Send	commit	message	to	ALL	participants.	

■If	acceptors	receives	commit	
▪ Done=true	
▪ Agreement	reached;	agreed-on	value	is	v.	

■Accepted	values	are	sent	to	learners	and	
clients.



To	be	discussed

■Multiple	proposers	
■Live	lock	
■Timeout	for	voted	value:	
▪ Is	it	true	that	one	a	value	is	voted,	all	the	process	
will	eventually	agree	on	this	value?		
▪ As	long	as	the	majority	requirement	is	met,	only	one	
value	will	be	chosen.	

▪ Is	it	possible	to	vote	for	different	value?	
▪ One	start	more	than	one	Paxos	algorithm	to	vote	on	
different	issue.



Multiple	Proposers

■There	may	be	more	than	one	proposer	in	the	
system,	each	proposing	a	value	for	same	request	
▪ Single	proposer	can	fail	
▪ Every	node	must	be	willing	to	become	a	proposer	

■All	nodes	wait	a	maximum	period	(timeout)	for	
messages	they	expect	
▪ Upon	timeout,	a	node	declares	itself	a	proposer	and	
initiates	a	new	Phase	1	of	algorithm.



Multiple	Proposers

Proposer	P1 Acceptor	A2Acceptor	A1
Proposal 1

Proposal 1

Accept, v1
Accept, v1

Promise
Promise

Ack

Acceptor	A3 Proposer	P2

Proposal 2
Proposal 2

PromisePromise

Accept, v2Accept, v2

Ack Ack

Ballot number issued by P2 is 
greater than that of P1.



Multiple	Proposers

Proposer	P1 Acceptor	A2Acceptor	A1

Proposal 3
Proposal 3

Accept, v2
Accept, v2

Promise
Promise, (2, v2)

Ack

Acceptor	A3 Proposer	P2

Commit, v2
Commit, v2

Ack

Commit, v2
Commit, v2

Try 
again.



Progress	isn’t	guaranteed

■ If	there	are	multiple	proposers,	progress	is	not	
guaranteed.	
▪ Proposers	may	repeatedly	propose	conflicting	values.	

■One	distinguished	proposer	can	be	elected	to	
propose.	
▪ All	the	proposals	are	sent	to	the	distinguish	proposer	first.	

■When	the	distinguish	proposer	fails,	a	leader	
election	algorithm	is	executed	first	to	elect	the	new	
distinguish	proposer.



Spanner:	Globally-Distributed	Database	
Systems	for	Google

■Goals:	
▪ Managing	cross-data	center	replicated	data	
▪ Supporting	interactive	applications	for	low	latency	
data	processing	(Not	batch	applications)	

▪ SQL-like	programming	language.	



New	mechanisms	in	Spanner

■Client-driven	replication	on	database	level:	
▪ In	BigTable,	the	replications	are	managed	by	GFS	to	share	
the	load	on	server.		

▪ In	Spanner,	the	replications	are	driven	by	application	
workloads	and	managed	by	Spanner,	not	GFS.	

■Time	with	uncertainty	
▪ Time	is	given	as	an	interval	to	contain	true	time	of	the	
event.	

▪ Time	is	synchronized	via	GPS	and	atomic	clocks	around	the	
world.	
▪ These	two	source	of	time	have	different	failure	models.



Server	Organization

■ A	Spanner	deployment	is	called	a	universe.	
■ Spanner	is	organized	as	a	set	of	zones,	

▪ Each	zone	is	the	rough	analog	of	a	deployment	of	Bigtable	server.	
▪ Zones	are	the	unit	of	administrative	deployment.		
▪ The	set	of	zones	is	also	the	set	of	locations	across	which	data	can	be	replicated.

Universe	Master Placement	Driver

Zone 1

Zone	Master

Location	Proxy

Span	Server

Zone 2

Zone	Master

Location	Proxy

Span	Server

Zone N

Zone	Master

Location	Proxy

Span	Server



Span	Servers

■ Each	span	server	is	responsible	for	between	100	and	1000	instances	of	a	
data	structure	called	a	tablet.	

■ Spanner	assigns	timestamps	to	data,	which	is	an	important	way	in	which	
Spanner	is	more	like	a	multi-version	database	than	a	key-value	store.



Distributed	File	Systems	for	
Hadoop



Assumption	on	Targeted	Systems	and	
Workloads

■ Hardware	Failure:	Hardware	failure	is	the	norm	rather	than	the	
exception.	

■ Streaming	Data	Access:	Applications	that	run	on	HDFS	need	
streaming	access	to	their	data	sets.		

■ Large	Data	Sets:	Applications	that	run	on	HDFS	have	large	data	
sets.		

■ Simple	Coherency	Model:	HDFS	applications	need	a	write-once-
read-many	access	model	for	files.		

■Moving	Computation	is	Cheaper	than	Moving	Data:	A	
computation	requested	by	an	application	is	much	more	efficient	
if	it	is	executed	near	the	data	it	operates	on.		

■ Portability	Across	Heterogeneous	Hardware	and	Software	
Platforms



Hadoop	Distributed	File	Systems	
(HDFS)

■HDFS	is	highly	fault-tolerant	and	is	designed	to	be	
deployed	on	low-cost	hardware.	(In	other	words,	not	
reliable	and	can	be	replaced	at	any	time.)	

■HDFS	provides	high	throughput	access	to	
application	data	and	is	suitable	for	applications	that	
have	large	data	sets.		

■HDFS	relaxes	a	few	POSIX	requirements	to	enable	
streaming	access	to	file	system	data.		

■HDFS	was	originally	built	as	infrastructure	for	the	
Apache	Nutch	web	search	engine	project.



Hbase	in	Hadoop

■HBase	is	the	Hadoop	database.		
▪ Use	it	when	you	need	random,	realtime	read/write	access	
to	your	Big	Data.		

▪ This	project's	goal	is	the	hosting	of	very	large	tables	--	
billions	of	rows	X	millions	of	columns	--	atop	clusters	of	
commodity	hardware.	

■HBase	is	an	open-source,	distributed,	versioned,	
column-oriented	store	modeled	after	Google'	
Bigtable.	
■HBase	provides	Bigtable-like	capabilities	on	top	of	
Hadoop.	



HBase

■ HBase	provides:	
▪ Convenient	base	classes	for	backing	Hadoop	MapReduce	jobs	with	HBase	tables	
▪ Query	predicate	push	down	via	server	side	scan	and	get	filters	
▪ Optimizations	for	real	time	queries	
▪ A	high	performance	Thrift	gateway	
▪ A	REST-ful	Web	service	gateway	that	supports	XML,	Protobuf,	and	binary	data	encoding	

options	
▪ Cascading,	hive,	and	pig	source	and	sink	modules	
▪ Extensible	jruby-based	(JIRB)	shell	
▪ Support	for	exporting	metrics	via	the	Hadoop	metrics	subsystem	to	files	or	Ganglia;	or	via	

JMX	
■ HBase	0.20	(0.95	is	the	latest	version)	has	greatly	improved	on	its	predecessors:	

▪ No	HBase	single	point	of	failure	
▪ Rolling	restart	for	configuration	changes	and	minor	upgrades	
▪ Random	access	performance	on	par	with	open	source	relational	databases	such	as	

MySQL.



HDFS	Architecture



HDFS	Architecture

■ NameNode:	
▪ An	HDFS	cluster	consists	of	a	single	NameNode,	a	master	server	that	

manages	the	file	system	namespace	and	regulates	access	to	files	by	clients.	
▪ The	NameNode	executes	file	system	namespace	operations	like	opening,	

closing,	and	renaming	files	and	directories.	It	also	determines	the	mapping	
of	blocks	to	DataNodes.	

■ DataNodes:	
▪ The	DataNodes	are	responsible	for	serving	read	and	write	requests	from	

the	file	system’s	clients.	The	DataNodes	also	perform	block	creation,	
deletion,	and	replication	upon	instruction	from	the	NameNode.	

▪ There	are	several	data	nodes	in	each	cluster.	
▪ It	manages	storage	attached	to	the	nodes	that	they	run	on.	
▪ A	file	is	split	into	one	or	more	blocks	and	these	blocks	are	stored	in	a	set	of	

DataNodes.	



Big	Picture	for	HBase



Big	Picture	for	HBase

■HRegionServer:	used	for	the	write-ahead	log	
■HMaster	will	have	to	perform	low-level	file	
operations	
▪ The	HMaster	is	responsible	to	assign	the	regions	
to	each	HRegionServer	when	you	start	HBase.



HFile

■ Hfiles	are	the	actual	storage	files,	specifically	created	to	serve	
one	purpose:	store	HBase's	data	fast	and	efficiently.	

■ They	are	apparently	based	on	Hadoop's	Tfile	and	mimic	the	
SSTable	format	used	in	Googles	BigTable	architecture.	

■ The	files	have	a	variable	length,	the	only	fixed	blocks	are	the	
FileInfo	and	Trailer	block.	



File	Access	Flow

■The	general	flow	is	that		
▪ a	new	client	contacts	the	Zookeeper	quorum	(a	separate	cluster	of	
Zookeeper	nodes)	first	to	find	a	particular	row	key.		

▪ It	does	so	by	retrieving	the	server	name	(i.e.	host	name)	that	hosts	the	
-ROOT-	region	from	Zookeeper.		

▪ With	that	information	it	can	query	that	server	to	get	the	server	that	hosts	
the	.META.	table.	Both	of	these	two	details	are	cached	and	only	looked	up	
once.		

▪ Lastly	it	can	query	the	.META.	server	and	retrieve	the	server	that	has	the	
row	the	client	is	looking	for.	

▪ Once	it	has	been	told	where	the	row	resides,	i.e.	in	what	region,	it	caches	
this	information	as	well	and	contacts	the	HRegionServer	hosting	that	
region	directly.	So	over	time	the	client	has	a	pretty	complete	picture	of	
where	to	get	rows	from	without	needing	to	query	the	.META.	server	again.



Discussion:	GFS	vs.	Coda

■What’s	the	difference	on	targeted	system	
architecture?	
▪ Connectivity	between	client	and	servers.	

■What’s	the	challenges	of	interested?	
▪ Performance	
▪ Scalability	
▪ Availability	
▪ Robustness



Summary

■We	have	learned	
▪ the	features	and	services	DFS	should	provide,	
▪ the	issues	of	designing	DFSs,		
▪ File	access	models,		
▪ File-caching	models,		
▪ File-replication,	and	
▪ Fault-tolerance.	

■We	also	studied	CODA,	and	BigTable	
distributed	file	system.	
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