
Advanced	Operating	Systems:	
Distributed	Shared	Memory



Motivation

■RPC	allows	us	to	pass	messages	to	the	
processes	in	the	distributed	systems.	
■RMI	allows	us	to	call	procedures	in	the	
distributed	systems.	
■We	used	to	have	shared	memory	in	uni-
processor	systems	to	share	data	between	
process.	
■It	is	popular	to	use	shared-memory	in	tightly-
coupled	multi-processor	systems.	
■How	about	loosely	coupled	distributed	
systems?
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Advantages	of	DSM

■ Simpler	Abstraction	
▪ Programming	distributed	memory	machines		
▪ Message	passing	models	is	tedious	and	error	prone.	
▪ Under	RPC	and	message	passing,	it	is	difficult	to	pass	context-related	data	or	

complex	data	structures.	
■ Better	Portability	of	Distributed	Application	Programs	

▪ Consistent	access	protocol	makes	it	easier	to	transit	from	sequential	
applications	to	distributed	applications.	

▪ Migrating	shared-memory	multiprocessor	applications	to	distributed	systems	
with	distributed	shared	memory	is	seamless.	

■ Better	Performance	of	Some	Applications	
▪ Locality	of	Data	
▪ On-demand	data	movement	
▪ Larger	memory	space	

■ Flexible	Communication	Environment	
■ Ease	of	Process	Migration



Design	and	Implementation	Issues	of	
DSM

■Granularity:	block	vs.	page	
■Structure	of	shared-memory	space	
■Memory	coherence	and	access	
synchronization	(consistence)	
■Data	location	and	access	
■Replacement	strategy	
■Thrashing	
■Heterogeneity



Coherence	vs.	Consistency

■Coherence	concerns	only	one	memory	location	
■Consistency	concerns	for	all		locations	
■A	memory	system	is	coherence	if	
■it	can	serialize	all	operations	to	that	location	
■operations	performed	by	any	core	appear	in	
program	order.	

■it	reads	return	values	written	by	last	store	to	
that	location.		

■A	memory	system	is	consistent	if	
■if	follows	the	rules	of	its	memory	model	
■operations	on	memory	location	appears	in	
some	defined	order.	 6



Coherence	vs.	Consistency

■Name	a	few	coherence	protocol:	
■Snooping:	snooping	is	a	process	where	the	individual	caches	monitor	
address	lines	for	accesses	to	memory	locations	that	they	have	cached.	
When	a	write	operation	is	observed,	the	cache	controller	invalidates	its	
own	copy	of	the	snooped	memory	location.		
■Snarfing:	a	cache	controller	watches	both	address	and	data	in	an	
attempt	to	update	its	own	copy	of	a	memory	location	when	a	second	
master	modifies	a	location	in	main	memory.	When	a	write	operation	is	
observed	to	a	location	that	a	cache	has	a	copy	of,	the	cache	controller	
updates	its	own	copy	of	the	snarfed	memory	location	with	the	new	
data.	

■Name	a	few	consistency	protocol:	
■Strict	consistency:	if	a	process	reads	any	memory	location,	the	value	
returned	by	the	read	operation	is	the	value	written	by	the	most	recent	
write	operation	to	that	location.	
■Sequential	consistency	
■Processor	consistency
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Coherent	but	not	consistent

■Can	you	find	a	memory	trace	which	is	
coherent	but	not	consistent?

8

initially	A=B=0	
process	1															process	2	
store	A	:=	1												load	B	(gets	1)	
store	B	:=	1												load	A	(gets	0)	
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Granularity	–	How	to	select	block	
size

■Block:	the	unit	for	transmitting	data.	
■Trade-off:	network	traffic	vs.	parallelism	
■What’s	the	difference	between	multi-processor	
system	and	distributed	systems	in	terms	of	memory	
access?	

■Factors	to	consider:	
▪ Paging	overhead	
▪ Directory	size	
▪ Thrashing	
▪ False	sharing

P1

P2

One data block



Using	page	size	as	block	size

■The	system	can	use	existing	page	fault	
schemes.	
■The	system	can	use	existing	access	right	
control.	
■If	a	page	can	be	fitted	into	a	packet,	page	
sizes	do	not	impose	undue	communication	
overhead.	
■A	page	size	is	a	suitable	data	entity	with	
respect	to	memory	contention.



Structure	of	Shared-Memory	Space

■ Structure:	the	abstract	view	of	the	shared-memory	space	
▪ One	may	see	the	DSM	as	a	storage	of	words	and		
▪ The	other	may	see	the	DSM	as	a	storage	of	data	objects.	

■ It	is	related	to	the	choice	of	block	size.	
■ Three	common	structures:	

▪ No	structuring	
▪ Fixed	grain	size	for	all	applications	
▪ Easier	to	choose	any	suitable	page	size	as	the	unit	of	sharing	

▪ Structuring	by	data	type	
▪ Variable	grain	size	
▪ Complicated	design	and	implementation	

▪ Structuring	as	a	database	
▪ Tuple	space:	memory	ordered	by	their	content.	
▪ Accessed	by	specifying	the	number	of	their	fields	and	their	values	via	special	access	

functions	
■ How	does	the	type	of	structure	affect	the	implementation	of	your	

systems?



Consistency	Models

■ Consistency	models:	the	degree	of	consistency	that	has	to	be	
maintained		

■ Ongoing	researches:	relax	the	requirements	to	a	greater	
degree.	

■ Example	of	different		consistency	models:	

▪ Which	one	aims	on	ordering?	
▪ Which	one	aims	on	results?
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Consistency	Models

■ Stronger	consistency	model	vs.	weaker	consistency	model	
■ Available	models:	
▪ Strict	consistency	model	
▪ Sequential	consistency	model	
▪ Causal	consistency	model	
▪ Pipelined	random-access	memory	consistency	model	
▪ Processor	consistency	model	
▪ Weak	consistency	model	
▪ Release	consistency	model



Strict	Consistency	Model

■The	value	returned	by	a	read	operation	on	a	
memory	address	is	always	the	same	as	the	
value	written	by	the	most	recent	write	
operation	to	that	address.	
■All	writes	instantaneously	become	visible	to	
all	processes.	
■What	you	need:	
▪ read/write	operations	must	be	correctly	ordered	
▪ an	absolute	global	clock



Consistency	Models	–	Strict	
Consistency

{ 
 … 
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 … 
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 … 
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 … 
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 e=foo() 
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Sequential	Consistency	Model

■ It	was	proposed	by	Lamport	in	’79.	
■ All	processes	see	the	same	order	of	all	memory	access	

operations	on	the	shared	memory.	
▪ The	orders	seen	by	processes	must	be	the	same	but	
▪ They	are	not	necessary	to	be	equal	to	the	EXACT	orders.	

■ The	sequential	consistency	model	does	not	guarantee	that	a	
read	operation	on	a	particular	memory	address	always	
returns	the	same	value	as	written	by	the	most	recent	write	
operation	to	that	address.	

■ Running	a	program	twice	may	not	give	the	same	result	in	the	
absence	of	explicit	synchronization	operations.		

■ A	sequential	consistent	memory	provides	one-copy/single-
copy	semantics	because	all	the	processes	sharing	a	memory	
location	always	see	the	same	contents.	
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What’re	the	difficulties	of	
implementing	consistency	model?
■Each	node/process	needs	to	know	which	
instructions	are	issued	by	other	nodes/
processes.	
■Communications	or	synchronizations	are	
required	among	the	nodes/processes.		
■Communications/synchronizations	will	slow	
down	or	block	the	progress.		

■Consequently,	the	performance	of	the	systems	
become	poor.		
■When	the	number	of	nodes/processes	
increase,	the	penalty	increases	(exponentially).

22



Further	relaxing	the	model	to	
avoid	communication	overhead

■The	outcome	of	a	sequence	of	memory	
operations	depend	on		
■execution	order	and	
■what	else?
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Causally	Related

	 A	memory	reference	operation	(read/write)	is	said	to	be	potentially	causally	
related	to	another	memory	reference	operation	if	the	second	one	might	have	
been	influenced	in	any	way	by	the	first	one.	

foo(){ 
 … 

read(a); 
b = a * c; 
write(b); 
… 

}

Causally related

foo(){ 
 … 

read(a); 
b = a * c; 
write(b); 
… 

}

bar(){ 
 … 

read(d); 
e = d * c; 
write(e); 
… 

}

Not causally related



Casual	Consistency	Model

■It	is	proposed	by	Hutto	and	Ahamad	in	’90.	
■In	the	casual	consistency	model,		
▪ all	processes	see	only	those	memory	reference	
operations	in	the	same	order	that	are	potentially	
causally	related,	

▪ memory	reference	operations	that	are	not	causally	
related	may	be	seen	by	different	processes	in	different	
orders.	

■A	shared	memory	system	is	said	to	support	the	
causal	consistency	model	if	all	write	operations	
that	are	potentially	causally	related	are	seen	by	all	
processes	in	the	same	(correct)	order.	
▪ Suppose	W2	is	causally	related	to	W1,	i.e.,	W2	depends	
on	the	results	of	W1.	

▪ Only	(W1,	W2)	is	correct.	(W2,	W1)	is	not.	
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Pipelined	Random-Access	
Consistency	Model
■ It	is	proposed	by	Lipton	and	Sandberg	in	’88.	
■ PRAM	Consistency	Model:	

▪ All	write	operations	performed	by	a	single	process	are	seen	by	all	other	processes	in	the	order	
in	which	they	were	performed	as	if	all	the	write	operations	performed	by	a	single	process	in	a	
pipeline.	

▪ Write	operations	performed	by	different	processes	may	be	seen	by	different	processes	in	
different	orders.	

■ PRAM	Consistency	Model	is	simple	and	easy	to	implement.
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Consistency	Models	-	PRAM
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Global clock

… 
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… 

r2(x)
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 … 
 x=10 
 … 
 print(x) 
} 
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Consistency	Models	–	Processor	
Consistency	Model
■Proposed	by	Goodman	in	’89.	
■Adding	coherent	and	adheres	to	the	PRAM	consistency	model.	
■Memory	coherent:		
■for	any	memory	location	all	processes	agree	on	the	same	
order	of	all	WRITE	operations	to	that	location.		
■The	WRITE	operations	on	different	memory	location	can	be	in	
different	orders.
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Consistency	Models	–	Weak	
Consistency	Model

■ Observations	by	Dubois	et	al.	[1988]:	
▪ Not	necessary	to	show	the	change	done	by	every	write	operation.	
▪ Isolated	access	to	shared	variables	are	rare.	

■ Better	performance	can	be	achieved	if	consistency	is	enforced	on	a	group	
of	memory	reference	operations	rather	than	on	individual	memory	
reference	operations.	

■ A	synchronization	variable	is	used	to	propagate	all	writes	to	other	
machines,	and	to	perform	local	updates	with	regard	to	changes	to	global	
data	that	occurred	elsewhere	in	the	distributed	system.		

■ The	properties	of	weak	consistency:	
▪ Accesses	to	synchronization	variables	are	sequentially	consistent.	
▪ No	access	to	a	synchronization	variable	is	allowed	to	be	performed	until	all	previous	

writes	have	been	completed	everywhere.	->	To	propagate	the	write	before	end.	
▪ No	data	access	(read	or	write)	is	allowed	to	be	performed	until	all	previous	accesses	

to	synchronization	variables	have	been	performed.	->	To	accept	all	the	updates	
before	start.
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Consistency	Models	–	Release	
Consistency	Model

■Are	all	the	propagations	necessary?	
▪ All	changes	made	to	the	memory	by	the	process	are	

propagated	to	other	nodes.	
▪ All	changes	made	to	the	memory	by	other	processes	are	

propagated	from	other	nodes	to	the	process’s	node.	

■Release	consistency	mode	[Gharachorloo	et	al.	1990]	
provides	a	mechanism	to	clearly	tell	the	system	to	
decide	and	perform	one	of	these	two	operations.	

■Two	synchronization	variables	are	required:	
▪ Acquire:	a	process	is	about	to	enter	the	critical	section.	
▪ Release:	a	process	is	about	to	leave	the	critical	section.	

■Programmers	are	responsible	for	putting	acquire	and	
release	at	suitable	places	in	their	programs.



Consistency	Models	–	Release	
Consistency	Model

■Requirements	for	release	consistency	model:	
▪ All	accesses	to	acquire	and	release	synchronization	
variables	obey	processor	consistency	semantics.		

▪ All	previous	acquires	performed	by	a	process	must	
be	completed	successfully	before	the	process	is	
allowed	to	perform	a	data	access	operation	on	the	
memory.		

▪ All	previous	data	access	operations	performed	by	
a	process	must	be	completed	successfully	before	a	
release	access	done	by	the	process	is	allowed.
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Discussion	on	Consistency	Model

■Which	model	is	most	intuitive	to	you?	

■Which	model	is	almost	not	possible	to	
implement?	

■Which	model	is	most	intuitive	to	parallel	
programming	model?	

■What	are	the	trade-off	for	weaker	consistent	
model?



Facebook.com

■Suppose	facebook.com	uses	a	distributed	
shared-memory	to	implement	the	wall	
comment/display.	Which	consistency	model	
should	be	used	so	as	to	minimize	the	
implementation	and	run-time	overhead?



Google	Doc

■Suppose	that	you	share	your	google	
documents	with	several	groups	of	friends.	
■Which	consistency	model	should	be	used?	

▪ One	document	can	be	edited	by	at	most	one	user.		

▪ One	document	can	be	edited	by	more	than	one	
user.	
▪ ‘Save’	button	is	required	to	store	data.	
▪ No	‘Save’	button	is	required	to	store	data.



Implement	Sequential	Consistency	Model

■ Not	practical	to	implement	strict	DSM	model.		
■ Replication	and	migration	strategies	for	sequential	consistency	

model
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Non-replicated	and	Non-Migrating	
Blocks	(NRNMB)

■NRNMB	strategy:	
▪ There	is	a	single	copy	of	each	block	in	the	entire	
system.	

▪ The	location	of	a	block	never	changes.	
■NRNMB	is	easy	to	implement	but	has	poor	
performance	when	the	network	latency	is	high.

Client

1. Request block

2. Response

Owner node of the block



Replicated	and	migrated	blocks

■ Replication	complicates	the	memory	coherence	protocol.	
■ Two	protocols	to	ensure	sequential	consistency.	
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Nodes having 
valid copies

Write-invalidate
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Replicated	and	migrated	blocks

■ Replication	complicates	the	memory	coherence	protocol.	
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Replicated	and	migrated	blocks

■ Replication	complicates	the	memory	coherence	protocol.	
■ Two	protocols	to	ensure	sequential	consistency.	
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Status	Tags	for	Write-Invalidate	
Strategy

■ The	tag	indicates	
▪ whether	the	block	is	valid,	
▪ whether	the	block	is	shared,	and	
▪ whether	the	block	is	read-only	or	writeable.	

■ Read	Request	
▪ If	the	block	is	locally	available	and	is	valid,	the	request	is	satisfied	by	

accessing	the	local	copy.	
▪ Otherwise,	the	fault	handler	generates	a	read	fault	and	obtains	a	copy	

from	other	nodes.		
■Write	Request	
▪ If	the	block	is	locally	available	and	is	valid	and	writable,	the	request	is	

satisfied	by	accessing	the	local	copy.	
▪ Otherwise,	a	fault	is	generated	to	obtain	a	valid	copy	of	the	block	and	

changes	its	status	to	writable.	The	fault	also	invalidates	all	other	copies	
of	the	block.	Then,	the	request	can	be	continued.		



Global	Sequencing	Mechanism

■How	to	assure	that	the	write	operations	are	totally	
ordered	on	every	node?		

■Virtual	clock	proposed	by	Lamport	is	another	
approach.		

■Write-update	is	very	expensive	for	use	with	loosely	
coupled	distributed-memory	systems.
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(has a replica 
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Nodes having 
valid copies

Sequencer
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Data	Locating	in	the	RMB	Strategy

■Data	locating	issues:	
▪ Locating	the	owner	of	a	block.	
▪ Keeping	track	of	the	nodes	that	currently	have	a	
valid	copy	of	the	block.		

■Possible	solutions:	
▪ Broadcasting	
▪ Centralized-server	algorithm	
▪ Fixed	distributed-server	algorithm	
▪ Dynamic	distributed-server	algorithm
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Centralized-Server	Data	Locating	
Mechanism	for	RMB	Strategy
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Distributed-Server	Data	Locating	
Mechanism	for	RMB	Strategy
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Dynamic	Distributed-Server	Data	
Locating	Mechanism	for	RMB	Strategy
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Replacement	Strategy

■Challenging	Issues	for	caching	shared	
data:	
▪Which	block	to	replace?	
▪Where	to	place	a	replaced	block?	
■Replacement	Algorithms:	
▪ Usage-based	versus	non-usage	based:	LRU	
vs.	FIFO	

▪ Fixed	space	versus	variable	space	
▪ Is	variable	space	suitable?	



DSM	in	IVY	[Li	1986,	1988]	

■Most	DSM	differentiate	the	status	of	data	items	and	use	a	
priority	mechanism.	

■Each	memory	block	is	classified	into	one	of	the	following	
five	types:	unused,	nil,	read-only,	read-owned,	and	
writable.	

■Replacement	Priority:	
▪ Both	unused	and	nil	have	the	highest	replacement	priority.	
(Note:	LRU	may	leave	nil	blocks	as	they	are	invalidated	recently.)	

▪ Read-only	blocks	are	the	next.	
▪ Read-owned	and	writable	blocks	for	which	replica(s)	exist	on	
some	other	node(s)	are	the	next.	

▪ Read-owned	and	writable	blocks	for	which	only	this	node	has	



Where	to	place	a	replaced	block

■Two	commonly	used	approaches:	
▪ Using	secondary	storage	
▪ Using	the	memory	space	of	other	nodes.



Thrashing

■Why	thrashing?	
▪ Data	blocks	are	moved	back	and	forth	in	quick	
succession.

▪ Blocks	with	read-only	permissions	are	repeatedly	
invalidated	soon	after	they	are	replicated.

■Thrashing	indicates	poor	(node)	locality	in	
references.	

■Avoid	thrashing:
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Thrashing

■Why	thrashing?	
▪ Data	blocks	are	moved	back	and	forth	in	quick	
succession.

▪ Blocks	with	read-only	permissions	are	repeatedly	
invalidated	soon	after	they	are	replicated.

■Thrashing	indicates	poor	(node)	locality	in	
references.	

■Avoid	thrashing:
▪ Providing	application-controlled	locks
▪ Nailing	a	block	to	a	node	for	a	minimum	amount	of	time
▪ Tailoring	the	coherence	algorithms	to	the	shared-data	
usage	patterns


