
Synchronization

1

Clock	Synchronization

■When	each	machine	has	its	own	clock,	an	event	that	occurred	after	another	
event	may	nevertheless	be	assigned	an	earlier	time.	
■Example:	

▪ make	check	the	dependence	based	on	the	last	updated	time	of	dependent	files.	
▪ In	a	uni-processor	system,	there	is	only	one	clock.		
▪ In	a	distributed	systems,	there	are	more	than	one	clock.	

2

2142 21472143 2144 2145 2146

2139 21442140 2141 2142 2143
Update	output.cCreate	output.o

make

Clock	Synchronization	
Algorithms
■When	no	machines	have	WWV	receivers,	each	machine	keeps	its	own	clock.	
■When	one	machine	has	the	WWV	receiver,	we	may	still	have	troubles	to	
synchronize	the	other	machines.		
■The	relation	between	clock	time	and	UTC	when	clocks	tick	at	different	rates	are		
given.	
▪ When	the	UTC	time	is	t,	the	value	of	the	clock	on	machine	p	is	C(t).	
▪ How	often	should	the	computers	be	synchronized?	

3

If	the	drift	of	any	two	
clocks	should	be	no	more	
than	δ	and	the	maximum	
drift	rate	is	ρ,	when	should	

the	clocks	be	
synchronized?	

Cristian's	Algorithm	(External	synchronization)	
-	Passive	Time	Server	Centralized	Algorithm

■Assume	that	one	machine	has	a	WWV	receiver.		
■Getting	the	current	time	from	a	time	server.	

■Problem?	One	major	and	one	minor	problem. 4

The	Berkeley	Algorithm	(Mutual	or	internal	
synchronization)	-	Active	Time	Server	Centralized	
Algorithm

■The	time	daemon	asks	all	the	other	machines	for	their	clock	values.	
■The	machines	answer.	
■The	time	daemon	tells	everyone	how	to	adjust	their	clock.

5

The	clock	values	are	
selected	with	a	

threshold	to	ignore	
faulty	clocks.

The	calculated	new	
time	is	broadcast	to	

all	clocks	for	
synchronization.

Global	Averaging	Distributed	Algorithm

■Distributed	clock	algorithm	to	synchronize	the	
local	clock	with	the	other	clocks.	

■NTP	is	accurate	in	the	range	of	1	–	50	msec.	
6

T+R T+(i+1)R

T+R T+(i+1)R

T+R T+(i+1)R

T+R T+(i+1)R

Use	of	Synchronized	Clocks

■With	the	new	technology,	it	is	possible	to	keep	millions	of	
clocks	synchronized	to	within	a	few	milliseconds.		
■One	use	scenario	is	to	enforce	at-most-once	message,	e.g.,	
Heart-beat,	delivery	to	a	server,	even	in	the	face	of	crashes.	
▪ Traditional	approaches	assign	each	message	a	unique	
message	number.		

▪ The	server	keeps	a	table	for	received	messages.	But,	the	
server	may	crash	and	lost	the	table.		

▪ With	global	timestamp,	each	server	keeps	a	global	variable:	
▪ G	=	CurrentTime	–MaxLifeTime	–	MaxClockSkew	

▪ The	global	variable	is	written	to	the	disk	periodically.	
▪ The	message	is	accepted	only	when	its	timestamp	is	
later	than	the	global	timestamp.	Otherwise,	it	is	rejected	
because	it	could	be	accepted	earlier	or	too	old	to	accept.

7

Another	Example:	Totally-
Ordered	Multicasting

8

Updating	a	replicated	database	and	leaving	it	in	an	inconsistent	state.

Logical	Clocks

■Not	necessary	to	synchronize	all	machines	to	the	real	
time	(or	clock	on	the	wall).	
■It	is	sufficient	that	all	machines	agree	on	the	same	
time	—	logical	clock.		
■Lamport	Timestamps:	
▪ a	->	b:		event	a	happens	before	event	b	if	all	processes	
agree	that	event	a	happens	before	event	b.	

▪ The	relation	can	be	observed	directly	in	two	situations:	
▪ If	a	and	b	are	events	in	the	same	process,	and	a	occurs	
before	b,	then	a	->	b	is	true.	

▪ If	a	is	the	event	of	a	message	being	sent	by	one	process,	and	
b	is	the	event	of	the	message	being	received	by	another	
process,	a	->	b	is	also	true.		

▪ “Happens	before”	is	a	transitive	relation.
9

How	to	order	the	events

■Clocks	on	different	machines	may	run	at	different	rates.		
■The	times	for	the	events	need	to	follow	“happens	before”	
condition.	

10

0
6
12
18
24
30

54

36
42
48

0
8
16
24
32
40

72

48
56
64

0
10
20
30
40
50

90

60
70
80

75

51
59
67

66
60

A

B

D

C

Totally-Ordered	Multicasting	using	Lamport’s	
Timestamp

11

Delivered	message

Acknowledge

The	message	is	queued	according	to	
message	timestamp.

The	message	is	delivered	to	the	
application.

Acknowledge

Totally-Ordered	Multicasting	using	Lamport’s	
Timestamp

12

5 10

14
6

7
15 18
16 20

A:	Update	1
B:	Update	2

A

B

Ack(A)

Ack(B)

Ack(A)

Ack(B)

P1 P2

17

24

13

5 10

14
6

7
15 18
16 20

19

A

Ack(A)

Ack(B)

B

Ack(A)

Ack(B)

21
22

23

25

22

P1 P2

A(6) A(6)B(14)

B(14)

17
20

Totally-Ordered	Multicasting	using	Lamport’s	
Timestamp

14

5 10 20

14
6

A(6)	
B(14)	

Ack	A(6)

7
15

35
36

18
16 20

Discussion

■When	message	A	and	B	are	independent	messages,	
▪ is	it	necessary	to	enforce	the	totally-ordered	
multicasting?		

■Lamport’s	happen	before	defines	the	order	of	the	
events	according	to	the	logic	clock	timestamps.			
▪ When	event	a	is	the	sending	event	and	event	b	is	the	
receiving	event,	it	is	evident	that	a	happens	before	b.	
Hence,	C(a)	<	C(b).	

▪ When	C(a)	<	C(b),	is	it	necessary	that	a	happens	before	b?	
▪ What	if	event	a	and	b	have	no	ordering	relationship?	
▪ C(a)	<	C(b)	does	not	imply	that	event	a	occurs	
before	event	b.	

▪ No	causality	in	Lamport’s	timestamp. 15

Vector	Timestamps

■Each	process	maintains	a	vector	Vi	with	the	
following	properties:	
▪ Vi[i]	is	the	number	of	events	that	have	occurred	so	far	
at	Pi.		

▪ If	Vi[j]	=	k	then	Pi	knows	that	k	events	have	occurred	
at	Pj.	

■Vector	Timestamps	(VT)	assigned	to	an	event	a	has	
the	property	if	VT(a)	<	VT(b)	for	some	event	b,	then	
event	a	is	known	to	causally	precede	event	b.		
▪ Def:	VT(a)	<	VT(b)	if	VTa[i]	<=	VTb[i]	for	all	i	and	VTa[j]	
<	VTb[j]	for	one	j.	

16

Vector	Logical	Clocks

■Vector	logical	clocks	guarantees	the	following:	
▪ Each	host	uses	a	vector	of	counters,	i-th	
element	is	the	event(clock)	value	for	host	Pi,	
initially	all	zeros.	

▪ Each	host	Pi,	increments	the	i-th	element	of	its	
vector	upon	an	event,	and	assigns	the	vector	to	
the	event.	

▪ A	send	(message)	event	on	Pi	carries	its	vector	
timestamps.	

▪ For	a	receive	(message)	event	on	Pj,		
▪ If	k	is	not	j,	Vj	[k]	=	Max(Vj[k],	Vr[k])	
▪ Otherwise,	Vj[k]	=	Vj[k]	+	1 17

Vector	TimeStamp	Example	

18

P1

P2

P3

V1(1,2,3)=(0,0,0)

V2(1,2,3)=(0,0,0)

V3(1,2,3)=(0,0,0)

a b

dc

f

(1,0,0)

(2,0,0)

(2,1,0)

(2,2,0)

(2,2,2)

e

(0,0,1)

m1

m2

There	is	no	causality	between	message	e	and	f.	But,	vector	
timestamp	guarantees	that	Ve	<	Vf.	

What	about	a	and	f?	
	

Fill	the	vector	timestamps	for	all	the	
events

19

P1

P2

P3

V1(1,2,3,4)=(0,0,0,0)

V2(1,2,3,4)=(0,0,0,0)

V3(1,2,3,4)=(0,0,0,0)

1,0,0,0

P4
V4(1,2,3,4)=(0,0,0,0)

Vector	TimeStamp	Example

20

P1

P2

P3

V1(1,2,3,4)=(0,0,0,0)

V2(1,2,3,4)=(0,0,0,0)

V3(1,2,3,4)=(0,0,0,0)

1,0,0,0

P4

1,1,0,0

2,0,0,0

2,0,1,0

1,2,0,0

2,0,2,0 2,2,3,0

V4(1,2,3,4)=(0,0,0,0)
2,0,2,1 2,0,2,2

3,0,2,2 4,0,2,2

4,2,4,2

2,0,2,3

4,2,5,3

Fill	the	vector	timestamps	for	all	the	events	(Practice	in	class)	

21

P1

P2

P3

V1(1,2,3,4)=(0,0,0,0)

V2(1,2,3,4)=(0,0,0,0)

V3(1,2,3,4)=(0,0,0,0)

1,0,0,0

P4
V4(1,2,3,4)=(0,0,0,0)

Multicast	Casual	Messages

■We	now	know	the	causality	of	messages	on	uni-
cast	applications.		
■How	about	applications	requiring	multi-casting?		
▪ Considering	posting	messages	on	FB:	
▪ Alice	posts	a	message	on	her	wall.	
▪ Bob	posts	a	reply	to	Alice’s	message.	
▪ Carlie	posts	a	reply	to	Bob’s	reply.		

▪ How	to	send	the	message	and	replies	to	their	
friends?	
▪ Let	FB’s	servers	collect	all	the	messages	and	
broadcast	to	the	friends.	

▪ Is	there	a	distributed	mechanism?
22

Multicast	Casual	Messages

■Can	Vector-Timestamp	approach	be	extended	for	
multi-cast	messages?		
▪ We	need	to	assure	that	all	the	processes	in	the	group	
receive	the	message.	

▪ The	order	of	message	delivery	from	different	
processes	can	be	out	of	order.	
▪ For	same	process,	the	order	of	message	delivery	
should	be	in	the	sending	order.

23

Causality	by	vector	timestamps

■Increment	vector	only	on	sending	to	guarantee	casual	message	delivery.	
■Message	r	is	delivered	(from	Pj	to	Pk)	only	if		

▪ vt(r)[j]=Vk[j]	+	1:	r	is	the	next	message	that	Pk	was	expecting	from	process	
Pj.	

▪ vt(r)[i]	≤	Vk[i]	for	all	i	≠j:	Pk	has	not	seen	any	messages	that	were	not	seen	by	
Pj	when	it	sent	message	r.

24

Message	a

Message	a	is	delivered.

Message	r

Pi Pj Pk

Message	r	is	queued.

Vi[i]	=	2 Vk[i]	=	2Vj[i]	=	2
ai[i]	=	3

aj[i]	=	3

rj[i]	≠	Vk[i]	

Example	for	causality	using	vector	
timestamp	for	msg	multicast

25

P1

P2

P3

V1(1,2,3)=(0,0,0)

V2(1,2,3)=(0,0,0)

V3(1,2,3)=(0,0,0)
a

a

a

b

b

b

c

c

c

d

d

d e

e

ef

f

f

What’s	the	message	order	on	P3?
What’s	the	message	order	on	P1?

Example	for	causality	using	vector	
timestamp

26

P1

P2

P3

V1(1,2,3)=(0,0,0)

V2(1,2,3)=(0,0,0)

V3(1,2,3)=(0,0,0)
a

(0,0,1)

a

a

(0,0,1)

(0,0,1)

b

(0,1,1)

b

(0,1,1)

b

(0,1,1)

c

(0,2,1)

c

(1,2,1)

c

(1,2,1)

d

(1,1,1)

d

(1,1,1)

d

(1,2,1)
e

(1,3,1)

e

(1,3,2)

e

(1,3,2)

f

(1,2,2)

f

(1,3,2)

f

(1,2,2)

Casually	Independent

What’s	the	message	order	on	P3?
What’s	the	message	order	on	P1? a,	b,	d,	c,	f,	e

a,	b,	d,	c,	f,	e

Event	f	will	be	held	until	receiving	e.

Global	State

■The	global	state	consists	of		
▪ the	local	state	of	each	process	and		
▪ the	messages	that	are	currently	in	transit,	that	is,	that	
have	been	sent	but	not	delivered.		

■Global	state	can	be	used	to	detect	certain	system	states	
such	as	deadlock	and	normal	termination	of	a	protocol.

27

consistent	global	state

■A	cut	C	is	consistent	if	for	all	events	e	and	e’	

■Intuitively	if	an	event	is	part	of	a	cut	then	all	
events	that	happened	before	it	must	also	be	
part	of	the	cut	
■A	consistent	cut	defines	a	consistent	global	
state.

28

() () CeeeCe ∈⇒→∧∈ ''

Global	Snapshot	-	cut

• A	consistent	cut	
• An	inconsistent	cut

29

30

XX

Recorded	state	on	each	processor

X Processor	crashes

Channel	State	Approach

■Each	processor	records	its	own	state:	number	of	
events	on	the	processor.	
▪ The	recored	state	is	periodic	written	to	a	server.	

■When	a	processor	fails	and	tries	to	recover,	it	
tries	to	recover	from	its	local	logged	state	and	
works	with	other	processors	to	know	the	latest	
global	state.	
■Solution	here	requires	
▪ additional	storage	(number	of	messages)	
▪ additional	computation	at	recovery	time	
(involving	replaying	original	execution	to	capture	
messages	sent	but	not	received)

31

Distributed	snapshot	by	Chaney	
and	Lamport
■It	reflects	a	state	in	which	the	distributed	system	might	have	
been.	
■It	should	reflect	the	consistent	global	state.	For	example,	a	
receiving	event	cannot	exist	without	a	sending	event.		
■Chaney-Lamport	Algorithm	(1985):	
▪ Initiator:	
▪ Save	its	local	state	
▪ Send	marker	tokens	on	all	outgoing	edges	

▪ All	other	processes:	
▪ On	receiving	the	first	marker	on	any	incoming	edges,		
▪ Save	state,	and	propagate	markers	on	all	outgoing	

edges	
▪ Resume	execution,	but	also	save	incoming	messages	

until	a	marker	arrives	through	the	channel	
▪ Guarantees	a	consistent	global	state!

32

Recording	Global	State	-	
distributed	method.

a)	Organization	of	a	process	and	channels	for	a	distributed	snapshot

33

Recording	Global	State

34

Process	Q	keeps	its	local	
state	and	starts	to	
record	the	state	of	each	
channel.

Process	Q	records	all	the	
messages	at	its	incoming	
channels.

Process	Q	obtains	its	cut	
when	the	markers	are	
received	from	all	the	
incoming	channels.

Distributed	snapshot	by	Chandy	and	
Lamport	(1985)

35

P1

P2

P3

V1(1,2,3)=(0,0,0)

V2(1,2,3)=(0,0,0)

V3(1,2,3)=(0,0,0)
a

a

a

b

b

b

c

c

c

d

d

d e

e

ef

f

f

(1,1,1)(0,2,1)(0,0,1)

Start	 End	

Token	 P3	initiates	the	process;	On	P3,	the	Global	state	consists	of	
Msg	c	and	Msg	d.	P1	and	P2	have	the	same	Global	State.	

Election	Algorithms

■We	may	need	a	coordinator	in	a	distributed	
system.	For	instance,	to	lock	a	variable.		
■It	is	assumed	that	every	process	knows	the	
process	number	of	every	other	process.	
▪ However,	it	is	not	known	that	which	ones	are	
currently	up	and	which	ones	are	currently	
down.	

■The	goal	is	to	ensure	that	when	an	election	
starts,	it	concludes	with	all	processes	
agreeing	on	who	the	new	coordinator	is.

36

The	Bully	Algorithm

• Process	4	holds	an	election	
• Process	5	and	6	respond,	telling	4	to	stop	
• Now	5	and	6	each	hold	an	election.

37

Bully	Algorithm

d) Process	6	tells	5	to	stop	
e) Process	6	wins	and	tells	everyone

38

• What’s	the	limits	of	this	algorithm?	The	communication	among	live	
nodes	must	be	robust.

A	Ring	Algorithm

■Election	algorithm	using	a	ring	but	not	token.	

39

• The	requirements	on	communication	only	apply	the	neighboring	
nodes	on	the	ring.	

Mutual	Exclusion	for	Distributed	
Systems

■Mutual	exclusion:	Concurrent	access	of	processes	
to	a	shared	resource	or	data	is	executed	in	
mutually	exclusive	manner.	
▪ Only	one	process	is	allowed	to	execute	the	critical	
section	(CS)	at	any	given	time.	

▪ In	a	distributed	system,	shared	variables	(semaphores)	
or	a	local	kernel	cannot	be	used	to	implement	mutual	
exclusion.	

■Message	passing	is	the	sole	means	for	
implementing	distributed	mutual	exclusion.

40

Requirements

■Requirements	of	Mutual	Exclusion	Algorithms	
▪ Safety	Property:	At	any	instant,	only	one	process	
can	execute	the	critical	section.	

▪ Liveness	Property:	This	property	states	the	
absence	of	deadlock	and	starvation.	Two	or	more	
sites	should	not	endlessly	wait	for	messages	which	
will	never	arrive.	

▪ Fairness:	Each	process	receives	a	fair	chance	to	
execute	the	CS.	Fairness	property	generally	means	
the	CS	execution	requests	are	executed	in	the	
order	of	their	arrival	(time	is	determined	by	a	
logical	clock)	in	the	system.

41

Performance	Metrics

■The	performance	is	generally	measured	by	the	
following	four	metrics:	
▪ Message	complexity:	The	number	of	messages	required	
per	CS	execution	by	a	site.	

▪ Synchronization	delay:	After	a	site	leaves	the	CS,	it	is	
the	time	required	and	before	the	next	site	enters	the	CS.

42

Last	site	exits	CS Next	site	enters	CS

Synchronization	Delay
Time

Performance	Metrics

■Response	time:	The	time	interval	a	request	waits	for	its	
CS	execution	to	be	over	after	its	request	messages	have	
been	sent	out.	

■System	throughput:	The	rate	at	which	the	system	
executes	requests	for	the	CS.	

▪ system	throughput=1/(SD+E)		
▪ where	SD	is	the	synchronization	delay	and	E	is	the	average	critical	

section	execution	time.
43

Its	request	sent	out
It	enters	CS.

Response	Time

Time

It	leaves	CS.

CS	Execution	Time

CS	request	arrives

Mutual	Exclusion:		
A	Centralized	Algorithm

a)Process	1	asks	the	coordinator	for	permission	to	enter	a	critical	region.		Permission	is	
granted	

b)Process	2	then	asks	permission	to	enter	the	same	critical	region.		The	coordinator	
does	not	reply.	

c)When	process	1	exits	the	critical	region,	it	tells	the	coordinator,	when	then	replies	to	
2

44

Discussion

■What	are	the	disadvantage	of	centralized	
approach?		

■Requirements	of	distributed	approach:	
▪ No	single	point	failure.	
▪ No	global	knowledge	of	the	requests	
▪ Avoid	any	point	failure.	

■How	to	design	a	distributed	approach?

45

Distributed	Mutual	Exclusion	
Algorithms

■Distributed	mutual	exclusion	algorithms	must	
deal	with	unpredictable	message	delays	and	
incomplete	knowledge	of	the	system	state.	
■Three	basic	approaches	for	distributed	
mutual	exclusion:	
▪ Token	based	approach		
▪ Non-token	based	approach		
▪ Quorum	based	approach

46

Lamport’s	Distributed	Mutual	
Exclusive	Algorithm

■Requests	for	CS	are	executed	in	the	increasing	
order	of	timestamps	and	time	is	determined	
by	logical	clocks.	
■Every	site	Si	keeps	a	queue,	request_queuei	,	
which	contains	mutual	exclusion	requests	
ordered	by	their	timestamps.	
■This	algorithm	requires	communication	
channels	to	deliver	messages	the	FIFO	order.

47

Algorithm:	Requesting	the	
critical	section
■Requesting	the	critical	section:	
▪ When	a	site	Si	wants	to	enter	the	CS,	it	broadcasts	a	
REQUEST(tsi,	i)	message	to	all	other	sites	and	places	
the	request	on	request_queuei.	((tsi,	i)	denotes	the	
timestamp	of	the	request.)	

▪ When	a	site	Sj	receives	the	REQUEST(tsi,i)	message	
from	site	Si,	places	site	Si	’s	request	on	request_queuej	
and	it	returns	a	timestamped	REPLY	message	to	Si	.	

▪ Executing	the	critical	section:	Site	Si	enters	the	CS	
when	the	following	two	conditions	hold:	
▪ L1:	Si	has	received	a	REPLY	message	with	timestamp	
larger	than	(tsi,	i)	from	all	other	sites.	

▪ L2:	Si	’s	request	is	at	the	top	of	request_queuei	.

48

Algorithm:	Releasing	the	critical	
section
■Site	Si	,	upon	exiting	the	CS,	removes	its	
request	from	the	top	of	its	request	queue	and	
broadcasts	a	timestamped	RELEASE	
message	to	all	other	sites.	
■When	a	site	Sj	receives	a	RELEASE	message	
from	site	Si	,	it	removes	Si	’s	request	from	its	
request	queue.	
■When	a	site	removes	a	request	from	its	
request	queue,	its	own	request	may	come	at	
the	top	of	the	queue,	enabling	it	to	enter	the	
CS.

49

Example

50

P1

P2

P3

t=1

t=3

Request(1,	P1)

Request(3,	P3)

Q1=((1,	P1))

Q3=((3,	P3))

Q1=(?)

t=6

t=4 t=10

reply(ts=5)

t=5

Length	of	
CS=5

t=8 t=9

reply(ts=4)

Q3=(?) Q3=(?) Q3=(?)

Length	of	
CS=3

Q2=(?)

Safety

Theorem:	Lamport’s	algorithm	achieves	mutual	exclusion.		
Proof:	

• Proof	is	by	contradiction.	Suppose	two	sites	Si	and	Sj	are	executing	
the	CS	concurrently.	For	this	to	happen	conditions	L1	and	L2	must	
hold	at	both	the	sites	concurrently.	

• This	implies	that	at	some	instant	in	time,	say	t,	both	Si	and	Sj	have	
their	own	requests	at	the	top	of	their	request	queues	and	
condition	L1	holds	at	them.	Without	loss	of	generality,	assume	
that	Si’s	request	has	smaller	timestamp	than	the	request	of	Sj.	

• From	condition	L1	and	FIFO	property	of	the	communication	
channels,	it	is	clear	that	at	instant	t	the	request	of	Si	must	be	
present	in	request_queuej	when	Sj	was	executing	its	CS.	This	
implies	that	Sj	’s	own	request	is	at	the	top	of	its	own	request	queue	
when	a	smaller	timestamp	request,	Si	’s	request,	is	present	in	the	
request_queuej	–	a	contradiction!

51

Fairness

Theorem:	Lamport’s	algorithm	is	fair.		
Proof:	
• The	proof	is	by	contradiction.	Suppose	a	site	Si	’s	request	
has	a	smaller	timestamp	than	the	request	of	another	site	
Sj	and	Sj	is	able	to	execute	the	CS	before	Si	.	

• For	Sj	to	execute	the	CS,	it	has	to	satisfy	the	conditions	L1	
and	L2.	This	implies	that	at	some	instant	in	time	say	t,	Sj	
has	its	own	request	at	the	top	of	its	queue	and	it	has	also	
received	a	message	with	timestamp	larger	than	the	
timestamp	of	its	request	from	all	other	sites.	

• But	request	queue	at	a	site	is	ordered	by	timestamp,	and	
according	to	our	assumption	Si	has	lower	timestamp.	So	
Si	’s	request	must	be	placed	ahead	of	the	Sj	’s	request	in	
the	request_queuej	.	This	is	a	contradiction!

52

Ricart-Agrawala	Algorithm	-	A	
Distributed	Algorithm

Three	potential	problems	of	Lamport’s	algorithm:			
▪ Compared	to	centralized	approach,	single	point	of	failure	has	been	
replaced	by	n	points	of	failure.	

▪ A	group	communication	protocol	is	needed	to	know	which	process	is	in	
the	group.		

▪ Bottleneck	problem	is	not	solved.	
53

This algorithm is an extension and optimization of Lamport's Distributed Mutual
Exclusion Algorithm, by removing the need for RELEASE messages.

https://en.wikipedia.org/wiki/Lamport%27s_Distributed_Mutual_Exclusion_Algorithm
https://en.wikipedia.org/wiki/Lamport%27s_Distributed_Mutual_Exclusion_Algorithm

Distributed	Mutual	Exclusion	
Algorithm	-	Ricart–Agrawala	algorithm

■The	requester	builds	a	message	containing	the	
name	of	the	critical	region,	its	process	number,	
and	the	current	time.		
■Two	cases:	
▪ The	receiver	returns	OK	if		
▪ the	receiver	does	not	want	to	enter	the	critical	region	
or	

▪ the	receiver	has	a	request	with	higher	timestamp.	
▪ The	receiver	returns	nothing	and	queues	the	
message	if		
▪ it	is	in	the	critical	region	or		
▪ it	wants	to	enter	the	critical	region	and	has	the	lower	
time	stamp.	

54

Distributed	Mutual	Exclusion	
Algorithm

■Lamport’s	algorithm:	
▪ Suffers	from	multiple	point	of	failure	
▪ #	of	messages:	3(N-1)	per	request	

■Ricart–Agrawala	algorithm	
▪ Suffers	from	multiple	point	of	failure	
▪ #	of	messages:	2(N-1)	per	request

55

A	Token	Ring	Algorithm

• Token-ring	Algorithm:	
• A	process	can	enter	the	critical	region	only	if	it	holds	the	token.		

• A	token	can	only	be	used	for	one	critical	region.		

• The	token	is	passed	immediately	if	not	interested	in	entering	the	critical	region.		
• Problems:	

a)The	token	may	be	lost.	

b)Some	process	may	crash.

56

Comparison

57

Algorithm Messages	per	entry/
exit

Delay	before	entry	(in	
message	times)

Problems

Centralized 3 2 Coordinator	crash

Ricart-Agrawala	
Algorithm

2	(n	–	1) 2	(n	–	1) Crash	of	any	
process

Lamport’s	
Algorithm

3	(n	–	1)/(n	–	1) 3	(n	–	1)/(n	–	1) Crash	of	any	
process

Token	ring 1	to	∞ 0	to	n	–	1 Lost	token,	process	
crash

Can	we	have	a	better	algorithm	which	does	not	suffer	point	
failure	and	low	complexity?

Quorum-based	Distributed	
Mutual	Exclusion	algorithm

■Rationale	
▪ Overlapping	quorum	sets	are	formed	in	the	
distributed	systems.	
▪ Any	two	sites	have	at	least	one	common	neighbor.	

▪ Requests	are	sent	to	the	sites	in	local	quorum	
set	only.	

▪ Requests	are	granted	when	grants	are	received	
from	all	the	nodes	in	the	quorum	set.

58

Definitions

■A	site	is	any	computing	device	in	the	network	
■For	any	request	of	the	critical	section:	
▪ The	requesting	site	is	the	site	which	is	
requesting	entry	into	the	critical	section.	

▪ The	receiving	site	is	every	other	site	which	is	
receiving	the	request	from	the	requesting	site.	

■ts	refers	to	the	local	timestamp	of	the	system	
according	to	its	logical	clock.

59

Requesting	locks

■A	requesting	site	Pi	sends	a	message	
request(ts,i)	to	all	sites	in	its	quorum	set	Ri.	
■Site	Pi	enters	the	critical	section	on	receiving	
grant	messages	from	all	sites	in	Ri.	
■Upon	exiting	the	critical	section,	Pi	sends	a	
release(i)	message	to	all	sites	in	Ri.

60

Granting	or	not	granting

■Upon	reception	of	a	request(ts,i)	message,	the	
receiving	site	Pj	will:	
▪ If	site	Pj	does	not	have	an	outstanding	grant	message,	
then	site	Pj	sends	a	grant(j)	message	to	site	Pi.	

▪ If	site	Pj	has	an	outstanding	grant	message	with	a	
process	with	higher	priority	(earlier	timestamp)	than	
the	request,	then	site	Pj	sends	a	failed(j)	message	to	
site	Pi	and	site	Pj	queues	the	request	from	site	Pi.	

▪ If	site	Pj	has	an	outstanding	grant	message	with	a	
process	with	lower	priority	(later	timestamp)	than	the	
request,	then	site	Pj	sends	an	inquire(j)	message	to	
the	process	which	has	currently	been	granted	access	
to	the	critical	section	by	site	Pj.

61

Inquire,	Yield,	and	manage	the	
queue

■Upon	reception	of	an	inquire(j)	message,	the	site	Pk:	
▪ Send	a	yield(k)	message	to	site	Pj	if	and	only	if		
▪ site	Pk	has	received	a	failed	message	from	some	other	site,	
or		

▪ Pk	has	sent	a	yield	to	some	other	site	but	has	not	received	a	
new	grant.	

■Upon	reception	of	a	yield(k)	message,	site	Pj	will:	
▪ Send	a	grant(j)	message	to	the	request	on	the	top	of	
its	own	request	queue.	

▪ Place	Pk	into	its	request	queue.	
■Upon	reception	of	a	release(i)	message,	site	Pj	will:	
▪ Delete	Pi	from	its	request	queue.	
▪ Send	a	grant(j)	message	to	the	request	on	the	top	of	
its	request	queue. 62

Define	Quorum	Set	(Maekawa’s	
Algorithm)

■A	quorum	set	must	abide	by	the	following	
properties:	
▪ 		
▪ 			
▪ 				
▪ Site	Pi	is	contained	in	exactly	K	quorum	sets	

■Therefore:	
▪ N=K(K-1)+1	and

63

€

∀i∀j Ri∩ R j[] ≠∅

€

∀i Pi ∈∩Ri[]

€

∀i Ri = K[]

€

Ri ≥ N −1

Example	for	quorum	sets

■When	N=3,		
▪ K=2	
▪ R1={1,2},	R2={1,3},	and	R3={2,3}.	

■When	N=7,	
▪ K=

64

Example	for	quorum	sets

■When	N=3,		
▪ K=2	
▪ R1={1,2},	R2={1,3},	and	R3={2,3}.	

■When	N=7,	
▪ K=3

65

R1={1,	2,	3}	
R4={1,	4,	5}	
R6={1,	6,	7}	
R2={2,	4,	6}	
R5={2,	5,	7}	
R7={3,	4,	7}	
R3={3,	5,	6}	

Comparison

66

Algorithm Messages	per	entry/
exit

Delay	before	entry	(in	
message	times)

Problems

Centralized 3 2 Coordinator	crash

Distributed 2	(n	–	1) 2	(n	–	1) Crash	of	any	
process

Token	ring 1	to	∞ 0	to	n	–	1 Lost	token,	process	
crash

Quorum-based	
Algorithm

3	\sqrt{N}	to	6	
\sqrt{N}

2

Distributed	Transactions

■Transactions	are	used	to	protect	shared	
resources.		
■ACID	properties:	Atomic,	Consistent,	Isolated	
and	Durable.	
■One	Example:		
▪ Using	e-bank	to	transfer	your	money	from	
your	checking	account	to	your	saving	account.	

▪ What	if	the	connection	is	broken	after	the	
money	is	withdrew	from	the	checking	account	
but	before	the	money	is	deposited	into	your	
saving	account	?

67

Implementations

■Transactions	sound	like	a	good	idea,	but	how	
to	implement	them?		
■Atomicity	and	Durability:	
▪ No	failure:	private	workspace	or	Writeahead	
log		

▪ With	failures:	we	will	discuss	it	later	
■Consistency	and	Isolation:	Concurrency	
Control	
▪ Serializability	
▪ Two-Phase	Locking

68

Private	Workspace

a)Make	a	local	of	the	related	files	
b)Update	the	files	back	when	the	transaction	completes

69

a)The	file	index	and	disk	blocks	for	a	three-block	file	
b)The	situation	after	a	transaction	has	modified	block	0	and	appended	block	3	
c)After	committing

Writeahead	Log

a)	A	transaction	
b)	–	d)	The	log	before	each	statement	is	
executed

70

x	=	0;	
y	=	0;	
BEGIN_TRANSACTION;	
		x	=	x	+	1;	
		y	=	y	+	2	
		x	=	y	*	y;	
END_TRANSACTION;	
														(a)	

Log	

[x	=	0	/	1]	

		(b)

Log	

[x	=	0	/	1]	
[y	=	0/2]	

			(c)			

Log	

[x	=	0	/	1]	
[y	=	0/2]	
[x	=	1/4]	

				(d)

Concurrency	Control

■Concurrency	control	handles	the	consistency	and	
isolation	properties.	
■Goal:	
▪ Allow	several	transactions	to	be	executed	simultaneously.	
▪ The	collection	of	data	items	is	left	in	a	consistent	state.

71

Concurrency	Control	for	
Distributed	Systems
■General	organization	of	managers	for	handling	distributed	
transactions.

72

Serializability

■Possible	schedules

73

BEGIN_TRANSACTION	
		x	=	0;	
		x	=	x	+	1;	
END_TRANSACTION

BEGIN_TRANSACTION	
		x	=	0;	
		x	=	x	+	2;	
END_TRANSACTION

BEGIN_TRANSACTION	
		x	=	0;	
		x	=	x	+	3;	
END_TRANSACTION

Schedule	1 x	=	0;		x	=	x	+	1;		x	=	0;		x	=	x	+	2;		x	=	0;		x	=	x	+	3 ?

Schedule	2 x	=	0;			x	=	0;		x	=	x	+	1;		x	=	x	+	2;		x	=	0;		x	=	x	+	3; ?

Schedule	3 x	=	0;		x	=	0;		x	=	x	+	1;		x	=	0;		x	=	x	+	2;		x	=	x	+	3; ?

Transactions	T1,	T2,	and	T3

A	schedule	is	serial	if	the	actions	of	the	different	transactions	are	not	
interleaved;	they	are	executed	one	after	another	

A	schedule	is	serializable	if	its	effect	is	the	same	as	that	of	some	serial	schedule	

Concurrency	Control

■Representation	Model:	
▪ Each	write/read	operation	for	variable	x	by	
transaction	Ti	is	
▪ write(Ti,	x);	read(Ti,	x)	

■The	challenge	is	to	schedule	conflicting	operations.	
■Two	operations	conflict	if	they	operate	on	the	
same	data	item,	and	if	at	least	one	of	them	is	a	
write	operation.		
▪ Read-Write	Conflict	
▪ Write-Write	Conflict	

■Two	types	of	Concurrency	Control:	Pessimistic	vs.	
optimistic

74

Pessimistic	Concurrency	Control:	
Two-Phase	Locking

■Lock	the	data	when	read/write.	
■(Non-Strict)	Two-Phase	Locking:		
▪ If	a	transaction	T	wants	to	read/write	an	object,	
it	must	request	a	shared/exclusive	lock	on	the	
object.		

▪ A	transaction	cannot	request	additional	locks	
on	an	object	once	it	releases	any	lock,	and	it	
can	release	locks	at	any	time.	

75

If	anything	will	go	wrong,	it	will.		
																																																																																														—	Murphy's	Laws	
In	nature,	nothing	is	ever	right.	Therefore,	if	everything	is	going	
right	...	something	is	wrong.	

Two-Phase	Locking

■Two-phase	locking.

76

Strict	Two-Phase	Locking

■Strict	two-phase	locking.

77

Strict	2PL

■Strict	2PL		
▪ prevents	transactions	from		
▪ reading	uncommitted	data,		
▪ overwriting	uncommitted	data,	and		
▪ unrepeatable	reads.		

▪ It	does	not	guarantee	that	deadlocks	cannot	occur,		
▪ It	may	additionally	be	difficult	to	enforce	in	distributed	
data	bases,	or	fault	tolerant	systems	with	multiple	
redundancy.	

■A	deadlocked	schedule	supposedly	allowed	in	Strict	2PL.	
■Implementation:	
▪ Centralized	2PL	
▪ Primary	2PL	
▪ Distributed	2PL

78

Read-Write	Conflicts

79

T1

T2

WR(x=2)

RD3RD1 RD2

START

START COMMIT

RD1:	read	x=1	
and	tsRD(x)=ts1.

x=1

RD1	successes	and	WR	aborts.

ts1

ts2

WR2	success	
RD2:	aborts	because	if	it	may	read	x=2	

but	x=1	before	it	starts.

RD3:	abort		
because	if	it	may	read	x=2	but	x=1	

before	it	starts.

Timestamp	ordering

■Each	transaction	T	is	stamped	when	it	starts.	
■Every	data	item	had	a	read	timestamp	and	write	
timestamp.		
▪ tsRD(x):	the	start	time	of	the	transaction	that	
recently	reads	X	and	commits.	

▪ tsWR(x):the	start	time	of	the	transaction	that	
recently	changes	X	and	commits.	

▪ tstent(x):the	start	time	of	the	transaction	that	
recently	changes	x	and	not	yet	commits.	

▪ Timestamps	are	unique	according	to	Lamport’s	
approach.	

■When	two	operations	conflict,	the	data	manager	
processes	the	one	with	the	lowest	timestamp.

80

Pessimistic	Concurrency	Control

■When	a	scheduler	receives	an	operation	
read(T,x)	from	transaction	T	with	timestamp	
ts,	
▪ abort		transaction	T	if	ts<tsWR(x)	
▪ continue	transaction	T	if	ts	>	tsWR(x)	and	set	tsRD(x)	
=	max{ts,	tsRD(x)}	when	commits.	

■When	a	scheduler	receives	an	operation	
write(T,x)	from	transaction	T	with	timestamp	
ts,	
▪ abort		transaction	T	if	ts<tsRD(x)	
▪ continue	transaction	T	if	ts	>	tsRD(x)	and	set	tsWR(x)	
=	max{ts,	tsWR(x)}	when	commits. 81

Pessimistic	Timestamp	Ordering

■Three	transaction:	T1,	T2,	and	
T3.	
■Transaction	T1	starts	long	time	
ago	and	used	every	data	item	
needed	by	T2	and	T3.		
■Transaction	T2	and	T3	start	
concurrently	with	ts(T2)	<	
ts(T3)

82

T2	Write

(c)	and	(d):	T3	starts	
later	but	reads/writes	x	
before	T2’s	operations.

Pessimistic	Timestamp	Ordering

■(e):	no	conflict.	
■(f):	T2	waits	for	the	
interloper	to	commit	
and	continue.	
■(g):	abort	because	a	
later	update	on	x	
already	commits.		
■(h):	abort	for	the	same	
reason	although	not	
yet	committed.	

83

T2	Read

Optimistic	Timestamp	Ordering

■Idea:	Just	go	ahead	and	do	whatever	you	
want	to	without	paying	attention	to	what	
anybody	else	is	doing.	If	there	is	a	problem,	
worry	about	it	later.	
■At	the	end	of	the	transaction,	it	checks	all	
other	transactions	to	see	if	any	of	its	items	
have	been	changed	since	the	transaction	
started.		
■It	is	deadlock	free.

84

