
Advanced	Operating	Systems:	
Distributed	Shared	Memory

Motivation

■RPC	allows	us	to	pass	messages	to	the	
processes	in	the	distributed	systems.	
■RMI	allows	us	to	call	procedures	in	the	
distributed	systems.	
■We	used	to	have	shared	memory	in	uni-
processor	systems	to	share	data	between	
process.	
■It	is	popular	to	use	shared-memory	in	tightly-
coupled	multi-processor	systems.	
■How	about	loosely	coupled	distributed	
systems?

Memory-mapping
manager

Memory

CPU C1

CPU Cn2

Memory-mapping
manager

Memory

CPU C1

CPU Cnm

Distributed	Shared	Memory	(DSM)

Communication Network

Memory-mapping
manager

Memory

CPU C1

CPU Cn1

Distributed Shared Memory
(exists only virtually)

Node N1 Node N2 Node Nm

…

Advantages	of	DSM

■ Simpler	Abstraction	
▪ Programming	distributed	memory	machines		
▪ Message	passing	models	is	tedious	and	error	prone.	
▪ Under	RPC	and	message	passing,	it	is	difficult	to	pass	context-related	data	or	

complex	data	structures.	
■ Better	Portability	of	Distributed	Application	Programs	

▪ Consistent	access	protocol	makes	it	easier	to	transit	from	sequential	
applications	to	distributed	applications.	

▪ Migrating	shared-memory	multiprocessor	applications	to	distributed	systems	
with	distributed	shared	memory	is	seamless.	

■ Better	Performance	of	Some	Applications	
▪ Locality	of	Data	
▪ On-demand	data	movement	
▪ Larger	memory	space	

■ Flexible	Communication	Environment	
■ Ease	of	Process	Migration

Design	and	Implementation	Issues	of	
DSM

■Granularity:	block	vs.	page	
■Structure	of	shared-memory	space	
■Memory	coherence	and	access	
synchronization	(consistence)	
■Data	location	and	access	
■Replacement	strategy	
■Thrashing	
■Heterogeneity

Coherence	vs.	Consistency

■Coherence	concerns	only	one	memory	location	
■Consistency	concerns	for	all		locations	
■A	memory	system	is	coherence	if	
■it	can	serialize	all	operations	to	that	location	
■operations	performed	by	any	core	appear	in	
program	order.	

■it	reads	return	values	written	by	last	store	to	
that	location.		

■A	memory	system	is	consistent	if	
■if	follows	the	rules	of	its	memory	model	
■operations	on	memory	location	appears	in	
some	defined	order.	 6

Coherence	vs.	Consistency

■Name	a	few	coherence	protocol:	
■Snooping:	snooping	is	a	process	where	the	individual	caches	monitor	
address	lines	for	accesses	to	memory	locations	that	they	have	cached.	
When	a	write	operation	is	observed,	the	cache	controller	invalidates	its	
own	copy	of	the	snooped	memory	location.		
■Snarfing:	a	cache	controller	watches	both	address	and	data	in	an	
attempt	to	update	its	own	copy	of	a	memory	location	when	a	second	
master	modifies	a	location	in	main	memory.	When	a	write	operation	is	
observed	to	a	location	that	a	cache	has	a	copy	of,	the	cache	controller	
updates	its	own	copy	of	the	snarfed	memory	location	with	the	new	
data.	

■Name	a	few	consistency	protocol:	
■Strict	consistency:	if	a	process	reads	any	memory	location,	the	value	
returned	by	the	read	operation	is	the	value	written	by	the	most	recent	
write	operation	to	that	location.	
■Sequential	consistency	
■Processor	consistency

7

Coherent	but	not	consistent

■Can	you	find	a	memory	trace	which	is	
coherent	but	not	consistent?

8

initially	A=B=0	
process	1															process	2	
store	A	:=	1												load	B	(gets	1)	
store	B	:=	1												load	A	(gets	0)	

Coherent	but	not	consistent

■Can	you	find	a	memory	trace	which	is	
coherent	but	not	consistent?

9

initially	A=B=0	
process	1															process	2	
																																			load	A	(gets	0)		
store	A	:=	1							

store	A	:=	1

	load	A	(gets	0)	

Coherent	but	not	consistent

■Can	you	find	a	memory	trace	which	is	
coherent	but	not	consistent?

10

initially	A=B=0	
process	1															process	2	
store	B	:=	1											

																											load	B	(gets	1)

store	B	:=	1

load	B	(gets	1)

Coherent	but	not	consistent

■Can	you	find	a	memory	trace	which	is	
coherent	but	not	consistent?

11

initially	A=B=0	
process	1															process	2	
store	A	:=	1												load	B	(gets	1)	
store	B	:=	1												load	A	(gets	0)	

store	A	:=	1
store	B	:=	1

load	B	(gets	1)
	load	A	(gets	0)	

Granularity	–	How	to	select	block	
size

■Block:	the	unit	for	transmitting	data.	
■Trade-off:	network	traffic	vs.	parallelism	
■What’s	the	difference	between	multi-processor	
system	and	distributed	systems	in	terms	of	memory	
access?	

■Factors	to	consider:	
▪ Paging	overhead	
▪ Directory	size	
▪ Thrashing	
▪ False	sharing

P1

P2

One data block

Using	page	size	as	block	size

■The	system	can	use	existing	page	fault	
schemes.	
■The	system	can	use	existing	access	right	
control.	
■If	a	page	can	be	fitted	into	a	packet,	page	
sizes	do	not	impose	undue	communication	
overhead.	
■A	page	size	is	a	suitable	data	entity	with	
respect	to	memory	contention.

Structure	of	Shared-Memory	Space

■ Structure:	the	abstract	view	of	the	shared-memory	space	
▪ One	may	see	the	DSM	as	a	storage	of	words	and		
▪ The	other	may	see	the	DSM	as	a	storage	of	data	objects.	

■ It	is	related	to	the	choice	of	block	size.	
■ Three	common	structures:	

▪ No	structuring	
▪ Fixed	grain	size	for	all	applications	
▪ Easier	to	choose	any	suitable	page	size	as	the	unit	of	sharing	

▪ Structuring	by	data	type	
▪ Variable	grain	size	
▪ Complicated	design	and	implementation	

▪ Structuring	as	a	database	
▪ Tuple	space:	memory	ordered	by	their	content.	
▪ Accessed	by	specifying	the	number	of	their	fields	and	their	values	via	special	access	

functions	
■ How	does	the	type	of	structure	affect	the	implementation	of	your	

systems?

Consistency	Models

■ Consistency	models:	the	degree	of	consistency	that	has	to	be	
maintained		

■ Ongoing	researches:	relax	the	requirements	to	a	greater	
degree.	

■ Example	of	different		consistency	models:	

▪ Which	one	aims	on	ordering?	
▪ Which	one	aims	on	results?

看股票 看開票

Consistency	Models

■ Stronger	consistency	model	vs.	weaker	consistency	model	
■ Available	models:	
▪ Strict	consistency	model	
▪ Sequential	consistency	model	
▪ Causal	consistency	model	
▪ Pipelined	random-access	memory	consistency	model	
▪ Processor	consistency	model	
▪ Weak	consistency	model	
▪ Release	consistency	model

Strict	Consistency	Model

■The	value	returned	by	a	read	operation	on	a	
memory	address	is	always	the	same	as	the	
value	written	by	the	most	recent	write	
operation	to	that	address.	
■All	writes	instantaneously	become	visible	to	
all	processes.	
■What	you	need:	
▪ read/write	operations	must	be	correctly	ordered	
▪ an	absolute	global	clock

Consistency	Models	–	Strict	
Consistency

{
 …
 a=d
 c=a+b
 a=4
 …
}

{
 …
 a=10
 …
 print(a)
}

{
 …
 e=foo()
 f=bar()
 …
}

…
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
w1(a)
…

…
w2(a)
…

r2(a)

…

w3(e)
…
w3(f)
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

…
r1(d)
w2(a)
w1(a)
r1(a)
r1(b)
w3(e)
w1(c)
w1(a)
w3(f)
r2(a)
…

…
r1(d)
w2(a)
w1(a)
r1(a)
r1(b)
w3(e)
w1(c)
w1(a)
w3(f)
r2(a)
…

…
r1(d)
w2(a)
w1(a)
r1(a)
r1(b)
w3(e)
w1(c)
w1(a)
w3(f)
r2(a)
…

Strict Consistency Model

Global clock

Sequential	Consistency	Model

■ It	was	proposed	by	Lamport	in	’79.	
■ All	processes	see	the	same	order	of	all	memory	access	

operations	on	the	shared	memory.	
▪ The	orders	seen	by	processes	must	be	the	same	but	
▪ They	are	not	necessary	to	be	equal	to	the	EXACT	orders.	

■ The	sequential	consistency	model	does	not	guarantee	that	a	
read	operation	on	a	particular	memory	address	always	
returns	the	same	value	as	written	by	the	most	recent	write	
operation	to	that	address.	

■ Running	a	program	twice	may	not	give	the	same	result	in	the	
absence	of	explicit	synchronization	operations.		

■ A	sequential	consistent	memory	provides	one-copy/single-
copy	semantics	because	all	the	processes	sharing	a	memory	
location	always	see	the	same	contents.	

20

Consistency	Models	–	Sequential	
Consistency

{
 …
 a=d
 c=a+b
 a=4
 …
}

{
 …
 e=foo()
 f=bar()
 …
}

…
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
w1(a)
…

…

w3(e)
…
w3(f)
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

…
r1(d)
w1(a)
w2(a)
r1(a)
r1(b)
w3(e)
w1(c)
w1(a)
w3(f)
r2(a)
…

…
r1(d)
w1(a)
w2(a)
r1(a)
r1(b)
w3(e)
w1(c)
w1(a)
w3(f)
r2(a)
…

…
r1(d)
w1(a)
w2(a)
r1(a)
r1(b)
w3(e)
w1(c)
w1(a)
w3(f)
r2(a)
…

Sequential Consistency Model

Global clock
…
w2(a)
…

r2(a)

{
 …
 a=10
 …
 print(a)
}

What’re	the	difficulties	of	
implementing	consistency	model?
■Each	node/process	needs	to	know	which	
instructions	are	issued	by	other	nodes/
processes.	
■Communications	or	synchronizations	are	
required	among	the	nodes/processes.		
■Communications/synchronizations	will	slow	
down	or	block	the	progress.		

■Consequently,	the	performance	of	the	systems	
become	poor.		
■When	the	number	of	nodes/processes	
increase,	the	penalty	increases	(exponentially).

22

Further	relaxing	the	model	to	
avoid	communication	overhead

■The	outcome	of	a	sequence	of	memory	
operations	depend	on		
■execution	order	and	
■what	else?

23

a=0;b=0;	
a=1;	
b=a+2;	
print(“a:	%d,	b:%d\n”,	a,	b);

a=0;b=0;	
b=a+2;	
a=1;	
print(“a:	%d,	b:%d\n”,	a,	b);

Causality	因果關係

Further	relax	the	model

■The	outcome	of	a	sequence	of	memory	
operations	are	related	to		
■execution	order	and	
■what	else?

24

a=0;b=0;	
a=1;	
b=2;	
print(“a:	%d,	b:%d\n”,	a,	b);

a=0;b=0;	
b=2;	
a=1;	
print(“a:	%d,	b:%d\n”,	a,	b);

When	there	is	no	causality,	the	execution	order	has	no	effects.

Causally	Related

	 A	memory	reference	operation	(read/write)	is	said	to	be	potentially	causally	
related	to	another	memory	reference	operation	if	the	second	one	might	have	
been	influenced	in	any	way	by	the	first	one.	

foo(){
 …

read(a);
b = a * c;
write(b);
…

}

Causally related

foo(){
 …

read(a);
b = a * c;
write(b);
…

}

bar(){
 …

read(d);
e = d * c;
write(e);
…

}

Not causally related

Casual	Consistency	Model

■It	is	proposed	by	Hutto	and	Ahamad	in	’90.	
■In	the	casual	consistency	model,		
▪ all	processes	see	only	those	memory	reference	
operations	in	the	same	order	that	are	potentially	
causally	related,	

▪ memory	reference	operations	that	are	not	causally	
related	may	be	seen	by	different	processes	in	different	
orders.	

■A	shared	memory	system	is	said	to	support	the	
causal	consistency	model	if	all	write	operations	
that	are	potentially	causally	related	are	seen	by	all	
processes	in	the	same	(correct)	order.	
▪ Suppose	W2	is	causally	related	to	W1,	i.e.,	W2	depends	
on	the	results	of	W1.	

▪ Only	(W1,	W2)	is	correct.	(W2,	W1)	is	not.	

Consistency	Models	–	Casual	
Consistency

{
 …
 a=d
 c=a+b
 a=4
 …
}

{
 …
 e=foo()
 f=bar()
 …
}

…
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
w1(a)
…

…

w3(e)
…
w3(f)
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

…
r1(d)
w3(e)
w2(a)
w1(a)
r1(a)
r1(b)
w1(c)
w3(f)
w1(a)
r2(a)
…

…
r1(d)
w2(a)
w3(e)
w1(a)
r1(a)
r1(b)
w1(c)
w1(a)
w3(f)
r2(a)
…

…
r1(d)
w1(a)
w2(a)
r1(a)
r1(b)
w3(e)
w3(f)
w1(c)
w1(a)
r2(a)
…

Casual Consistency Model

Global clock

…
w2(a)
…

r2(a)

{
 …
 a=10
 …
 print(a)
}

Pipelined	Random-Access	
Consistency	Model
■ It	is	proposed	by	Lipton	and	Sandberg	in	’88.	
■ PRAM	Consistency	Model:	

▪ All	write	operations	performed	by	a	single	process	are	seen	by	all	other	processes	in	the	order	
in	which	they	were	performed	as	if	all	the	write	operations	performed	by	a	single	process	in	a	
pipeline.	

▪ Write	operations	performed	by	different	processes	may	be	seen	by	different	processes	in	
different	orders.	

■ PRAM	Consistency	Model	is	simple	and	easy	to	implement.

w12

w11

w22

w21

P1 P2P3

w12

w11

w22

w21

P4

w12

w11

w22

w21

Consistency	Models	-	PRAM

{
 …
 a=d
 c=a+b
 a=4
 …
}

{
 …
 e=foo()
 f=bar()
 …
}

…
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
w1(a)
…

…

w3(e)
…
w3(f)
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

…
r1(d)
w3(e)

w3(f)
w2(a)
w1(a)
r1(a)
r1(b)
w1(c)
w1(a)
r2(a)
…

…
r1(d)
w2(a)
w1(a)
r1(a)
r1(b)
w1(c)
w1(a)
w3(e)
w3(f)
r2(a)
…

…
r1(d)
w1(a)
r1(a)
r1(b)
w3(e)
w3(f)
w2(a)
w1(c)
w1(a)
r2(a)
…

Pipelined Random-Access Memory
Consistency Model

Global clock

…
w2(a)
…

r2(a)

{
 …
 a=10
 …
 print(a)
}

Consistency	Models	–	Processor	
Consistency	Model
■Proposed	by	Goodman	in	’89.	
■Adding	coherent	and	adheres	to	the	PRAM	consistency	model.	
■Memory	coherent:		
■for	any	memory	location	all	processes	agree	on	the	same	
order	of	all	WRITE	operations	to	that	location.		
■The	WRITE	operations	on	different	memory	location	can	be	in	
different	orders.

w12(b)

w11(a)

w22(a)

w21(b)

P1 P2P3 P4

w12(b)

w11(a)

w22(a)

w21(b)

w12(b)

w11(a)

w22(a)

w21(b)

Consistency	Models	–	Processor	
Consistency	Model
■How	about	this	sequence?

w12(b)

w11(a)

w22(a)

w21(b)

P1 P2P3 P4

w12(b)

w11(a)

w22(a)

w21(b)

w12(b)

w11(a)

w22(a)

w21(b)

Consistency	Models	–	Processor	
Consistency	Model

{
 …
 a=d
 c=a+b
 a=4
 …
}

{
 …
 e=foo()
 f=bar()
 …
}

…
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
w1(a)
…

…

w3(e)
…
w3(f)
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

…
r1(d)
w3(e)
w3(f)
w2(a)
w1(a)
r1(a)
r1(b)
w1(c)
w1(a)
r2(a)
…

…
r1(d)
w2(a)
w1(a)
r1(a)
r1(b)
w1(c)
w1(a)
w3(e)
w3(f)
r2(a)
…

…
r1(d)
w2(a)
w1(a)
r1(a)
r1(b)
w1(c)
w1(a)
r2(a)
w3(e)
w3(f)

 …

Processor Consistency Model

Global clock
…
w2(a)
…

r2(a)

{
 …
 a=10
 …
 print(a)
}

Memory coherences: any memory location all
processes agree on the same order of all write
operations to that location.

Consistency	Models	–	Weak	
Consistency	Model

■ Observations	by	Dubois	et	al.	[1988]:	
▪ Not	necessary	to	show	the	change	done	by	every	write	operation.	
▪ Isolated	access	to	shared	variables	are	rare.	

■ Better	performance	can	be	achieved	if	consistency	is	enforced	on	a	group	
of	memory	reference	operations	rather	than	on	individual	memory	
reference	operations.	

■ A	synchronization	variable	is	used	to	propagate	all	writes	to	other	
machines,	and	to	perform	local	updates	with	regard	to	changes	to	global	
data	that	occurred	elsewhere	in	the	distributed	system.		

■ The	properties	of	weak	consistency:	
▪ Accesses	to	synchronization	variables	are	sequentially	consistent.	
▪ No	access	to	a	synchronization	variable	is	allowed	to	be	performed	until	all	previous	

writes	have	been	completed	everywhere.	->	To	propagate	the	write	before	end.	
▪ No	data	access	(read	or	write)	is	allowed	to	be	performed	until	all	previous	accesses	

to	synchronization	variables	have	been	performed.	->	To	accept	all	the	updates	
before	start.

Consistency	Models	–	Weak	
Consistency	Model

{
 …
 a=d
 c=a+b
 s
 a=4
 …
}

{
 …
 e=foo()
 s
 f=bar()
 …
}

…
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
s1
w1(a)
…

…

w3(e)
s3
…
w3(f)
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

r1(d)
s2
w3(e)
w2(a)
w1(a)
r1(a)
r1(b)
s3
w1(c)
S1
w1(a)
w3(f)
r2(a)

r1(d)
s2
w2(a)
w1(a)
r1(a)
r1(b)
w3(e)
s3
w1(c)
s1
w1(a)
w3(f)
r2(a)

r1(d)
s2
w2(a)
w1(a)
r1(a)
r1(b)
w3(e)
s3
w1(c)
s1
w3(f)
w1(a)
r2(a)

Weak Consistency Model

Global clock

s2
w2(a)
…

r2(a)

{
 …
 s
 a=10
 …
 print(a)
}

Consistency	Models	–	Release	
Consistency	Model

■Are	all	the	propagations	necessary?	
▪ All	changes	made	to	the	memory	by	the	process	are	

propagated	to	other	nodes.	
▪ All	changes	made	to	the	memory	by	other	processes	are	

propagated	from	other	nodes	to	the	process’s	node.	

■Release	consistency	mode	[Gharachorloo	et	al.	1990]	
provides	a	mechanism	to	clearly	tell	the	system	to	
decide	and	perform	one	of	these	two	operations.	

■Two	synchronization	variables	are	required:	
▪ Acquire:	a	process	is	about	to	enter	the	critical	section.	
▪ Release:	a	process	is	about	to	leave	the	critical	section.	

■Programmers	are	responsible	for	putting	acquire	and	
release	at	suitable	places	in	their	programs.

Consistency	Models	–	Release	
Consistency	Model

■Requirements	for	release	consistency	model:	
▪ All	accesses	to	acquire	and	release	synchronization	
variables	obey	processor	consistency	semantics.		

▪ All	previous	acquires	performed	by	a	process	must	
be	completed	successfully	before	the	process	is	
allowed	to	perform	a	data	access	operation	on	the	
memory.		

▪ All	previous	data	access	operations	performed	by	
a	process	must	be	completed	successfully	before	a	
release	access	done	by	the	process	is	allowed.

Consistency	Models	–	Release	
Consistency	Model

{
 …
 a1
 a=d
 c=a+b
 r1
 a1
 a=4
 r1
 …
}

{
 …
 a2
e=foo()
 r2
 a2
 f=bar()
 r2
 …
}

…
a11
r1(d)
…
w1(a)
r1(a)
r1(b)
…
w1(c)
r11
a11
w1(a)
r11
…

…

a23
w3(e)
r23
a23
…
w3(f)
r23
…

Node N1 Node N2 Node N3 Node N1 Node N2 Node N3

a11
r1(d)
a23
w3(e)
r23
w1(a)
r1(a)
a23
w3(f)
r23
r1(b)
w1(c)
r11
a12
w2(a)
r12
a11
w1(a)
r11
r2(a)

Release Consistency Model

Global clock

a12
w2(a) …

r12
…
r2(a)

{
 …
 a1
 a=10
 r1
 …
 print(a)
}

a11
r1(d)
a23
w3(e)
r23
w1(a)
r1(a)
r1(b)
w1(c)
r11
a12
w2(a)
r12
a23
w3(f)
r23
a11
w1(a)
r11
r2(a)

a11
r1(d)
a23
w3(e)
r23
a23
w3(f)
r23
w1(a)
r1(a)
r1(b)
w1(c)
r11
a12
w2(a)
r12
a11
w1(a)
r11
r2(a)

Discussion	on	Consistency	Model

■Which	model	is	most	intuitive	to	you?	

■Which	model	is	almost	not	possible	to	
implement?	

■Which	model	is	most	intuitive	to	parallel	
programming	model?	

■What	are	the	trade-off	for	weaker	consistent	
model?

Facebook.com

■Suppose	facebook.com	uses	a	distributed	
shared-memory	to	implement	the	wall	
comment/display.	Which	consistency	model	
should	be	used	so	as	to	minimize	the	
implementation	and	run-time	overhead?

Google	Doc

■Suppose	that	you	share	your	google	
documents	with	several	groups	of	friends.	
■Which	consistency	model	should	be	used?	

▪ One	document	can	be	edited	by	at	most	one	user.		

▪ One	document	can	be	edited	by	more	than	one	
user.	
▪ ‘Save’	button	is	required	to	store	data.	
▪ No	‘Save’	button	is	required	to	store	data.

Implement	Sequential	Consistency	Model

■ Not	practical	to	implement	strict	DSM	model.		
■ Replication	and	migration	strategies	for	sequential	consistency	

model

Replication

Migration

Parallelism

Th
ra

sh
in

g

(Replicated, Migrated)

(Replicated, Non-migrated)(Non-replicated, Non-migrated)

(Non-Replicated, Migrated)

Pe
rf

or
m

an
ce

Non-replicated	and	Non-Migrating	
Blocks	(NRNMB)

■NRNMB	strategy:	
▪ There	is	a	single	copy	of	each	block	in	the	entire	
system.	

▪ The	location	of	a	block	never	changes.	
■NRNMB	is	easy	to	implement	but	has	poor	
performance	when	the	network	latency	is	high.

Client

1. Request block

2. Response

Owner node of the block

Replicated	and	migrated	blocks

■ Replication	complicates	the	memory	coherence	protocol.	
■ Two	protocols	to	ensure	sequential	consistency.	

Client

Nodes having
valid copies1. Request block

2. Replicate block

3. invalidate block

3. invalidate block

3. invalidate block

1. Request block

2. Replicate block

3. Update block

3. Update block

3. Update block

Client

Nodes having
valid copies

Write-updateWrite-invalidate

Status	Tags	for	Write-Invalidate	
Strategy

■ The	tag	indicates	
▪ whether	the	block	is	valid,	
▪ whether	the	block	is	shared,	and	
▪ whether	the	block	is	read-only	or	writeable.	

■ Read	Request	
▪ If	the	block	is	locally	available	and	is	valid,	the	request	is	satisfied	by	

accessing	the	local	copy.	
▪ Otherwise,	the	fault	handler	generates	a	read	fault	and	obtains	a	copy	

from	other	nodes.		
■Write	Request	
▪ If	the	block	is	locally	available	and	is	valid	and	writable,	the	request	is	

satisfied	by	accessing	the	local	copy.	
▪ Otherwise,	a	fault	is	generated	to	obtain	a	valid	copy	of	the	block	and	

changes	its	status	to	writable.	The	fault	also	invalidates	all	other	copies	
of	the	block.	Then,	the	request	can	be	continued.		

Global	Sequencing	Mechanism

■How	to	assure	that	the	write	operations	are	totally	
ordered	on	every	node?		

■Virtual	clock	proposed	by	Lamport	is	another	
approach.		

■Write-update	is	very	expensive	for	use	with	loosely	
coupled	distributed-memory	systems.

1. Modification

Client node
(has a replica

of the data block.)
Nodes having
valid copies

2. Sequenced
Modification

2. Sequenced
Modification

2. Sequenced
Modification

2. Sequenced
Modification

Sequencer

Data	Locating	in	the	RMB	Strategy

■Data	locating	issues:	
▪ Locating	the	owner	of	a	block.	
▪ Keeping	track	of	the	nodes	that	currently	have	a	
valid	copy	of	the	block.		

■Possible	solutions:	
▪ Broadcasting	
▪ Centralized-server	algorithm	
▪ Fixed	distributed-server	algorithm	
▪ Dynamic	distributed-server	algorithm

Broadcasting	Data	Locating	
Mechanism	for	RMB	Strategy

Contains an entry
for each block for
which this node is

the owner.

Block address
(changes

dynamically)

Copy-set
(changes

dynamically)

Contains an entry
for each block for
which this node is

the owner.

Block address
(changes

dynamically)

Copy-set
(changes

dynamically)

Contains an entry
for each block for
which this node is

the owner.

Block address
(changes

dynamically)

Copy-set
(changes

dynamically)

Node Boundary Node Boundary

Owned blocks table Owned blocks table Owned blocks table

Node 1 Node i Node M

Centralized-Server	Data	Locating	
Mechanism	for	RMB	Strategy

Contains an entry for each
block in the shared-memory

space.

Block address
(remains fixed)

Owner node
(changes

dynamically)

Node Boundary Node Boundary

Blocks table

Node 1 Node i Node M

Copy-set
(changes

dynamically)

Distributed-Server	Data	Locating	
Mechanism	for	RMB	Strategy

Node Boundary Node Boundary

Block Table
Block Manager

Node 1 Node i Node M

Block Table
Block Manager

Block Table
Block Manager

Contains entries for a
fixed subset of all

blocks in the shared-
memory space.

Block
address
(remains
fixed)

Copy-set
(changes
dynamically)

Owner node
(changes
dynamically)

Contains entries for a
fixed subset of all

blocks in the shared-
memory space.

Block
address
(remains
fixed)

Copy-set
(changes
dynamically)

Owner node
(changes
dynamically)

Contains entries for a
fixed subset of all

blocks in the shared-
memory space.

Block
address
(remains
fixed)

Copy-set
(changes
dynamically)

Owner node
(changes
dynamically)

Dynamic	Distributed-Server	Data	
Locating	Mechanism	for	RMB	Strategy

Node Boundary Node Boundary

Block Table
Block Manager

Node 1 Node i Node M

Block Table
Block Manager

Block Table
Block Manager

Contains entries
for a each block in

the shared-
memory space.

Block
address
(remains
fixed)

Copy-set
(changes
dynamically)

Probable
Owner node
(changes
dynamically)

An entry has a
value in this
filed only if this
node is the true
owner of the
corresponding
black.

Contains entries
for a each block in

the shared-
memory space.

Block
address
(remains
fixed)

Copy-set
(changes
dynamically)

Probable
Owner node
(changes
dynamically)

An entry has a
value in this
filed only if this
node is the true
owner of the
corresponding
black.

Contains entries
for a each block in

the shared-
memory space.

Block
address
(remains
fixed)

Copy-set
(changes
dynamically)

Probable
Owner node
(changes
dynamically)

An entry has a
value in this
filed only if this
node is the true
owner of the
corresponding
black.

Replacement	Strategy

■Challenging	Issues	for	caching	shared	
data:	
▪Which	block	to	replace?	
▪Where	to	place	a	replaced	block?	
■Replacement	Algorithms:	
▪ Usage-based	versus	non-usage	based:	LRU	
vs.	FIFO	

▪ Fixed	space	versus	variable	space	
▪ Is	variable	space	suitable?	

DSM	in	IVY	[Li	1986,	1988]	

■Most	DSM	differentiate	the	status	of	data	items	and	use	a	
priority	mechanism.	

■Each	memory	block	is	classified	into	one	of	the	following	
five	types:	unused,	nil,	read-only,	read-owned,	and	
writable.	

■Replacement	Priority:	
▪ Both	unused	and	nil	have	the	highest	replacement	priority.	
(Note:	LRU	may	leave	nil	blocks	as	they	are	invalidated	recently.)	

▪ Read-only	blocks	are	the	next.	
▪ Read-owned	and	writable	blocks	for	which	replica(s)	exist	on	
some	other	node(s)	are	the	next.	

▪ Read-owned	and	writable	blocks	for	which	only	this	node	has	

Where	to	place	a	replaced	block

■Two	commonly	used	approaches:	
▪ Using	secondary	storage	
▪ Using	the	memory	space	of	other	nodes.

Thrashing

■Why	thrashing?		
▪ Data	blocks	are	moved	back	and	forth	in	quick	
succession.	

▪ Blocks	with	read-only	permissions	are	repeatedly	
invalidated	soon	after	they	are	replicated.	

■Thrashing	indicates	poor	(node)	locality	in	
references.		

■Avoid	thrashing:	
▪ Providing	application-controlled	locks	
▪ Nailing	a	block	to	a	node	for	a	minimum	amount	of	time	
▪ Tailoring	the	coherence	algorithms	to	the	shared-data	
usage	patterns

