
Communication

Prof. Chi-Sheng Shih
Graduate Institute of Network and Multimedia

Department of Computer Science and Information Engineering
National Taiwan University

Topics to be Covered
• Remote Procedure Calls

• Message Passing

• Remote Object Invocation

• Message-Oriented Communication

• Stream-Oriented Communication

Remote Procedure Call
• The caller and called procedures are located on

different processors/machines.
• No message passing is visible to the programmers.

Steps of a Remote Procedure Call

7. The server stub
packs it in a
message and calls
its local OS.

8. The server’s OS sends the
message to the client’s OS.

9. The client’s OS
gives the
message to the
client stub.

10.The stub
unpacks the
result and
returns to the
client.

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Parameters Marshaling for Value Parameters

• Remember the text encoding problem?
• On a PC, read the file stored on IBM Mainframe?

• Same problem on heterogeneous distributed systems.
• How to fix it?

a) Original message on the x86 processor
b) The message after receipt on the SPARC
c) The message after being inverted.
(The little numbers in boxes indicate the address of each byte)

Reference Parameters
• One can forbid using reference parameters.
• Simple solution:

• Copy the referenced memory to the server and
change the pointer.

• Send back the procedure results AND the
referenced memory.

• How about the synchronization issue?
• Another solution:

• Send the pointer to the server
• Change the server to reference the memory on the

client.

Parameter Specification and Stub Generation
Parameters Specification includes

• Message format
• Data representation

• Integers are in two’2 complement
• How data are encoded?

• Communication Protocol
• Using TCP or UDP?
• Error correction?

• Interface Definition Language

Extended RPC Models
• Doors
• Asynchronized RPC
• Deferred synchronized RPC
• One-way RPC

Asynchronous RPC

2-12

RPC Asynchronous RPC

Deferred synchronous RPC
• A client and server interacting through two asynchronous RPCs

Doors
What if the client and server are on the same machine?

• Should the message be sent as generic RPC?
• What can be done to optimize the performance?

Lightweight RPC
(Example Leading Discussion)

• Who wrote this paper?

• What are the background of this paper?

• What are the motivation of this paper?

• New terms:
• Protection domain
• A-Stacks/E-Stacks
• Control transfer

• Performance results

• Uncommon cases:

• How to support Lightweight RPC crossing dockers?

Lightweight RPC
(Example Leading Discussion)

• New terms:
• Protection domain: Domains are designed to protect each process

from being attacked. One can consider single address space
operating system. Within which, each process has its protection
domain. Protected procedure call can transfer the control of object
from one domain to another domain.

• A-Stacks/E-Stacks: stacks for arguments and execution pointer

• Control transfer: the requests are executed by client thread on
Server’s domain. Similar to executing an interrupt service route
(ISR) at current process in modern operating systems.

Performance Results

• (Don’t copy the figures from paper and
summarize the results in your words.)

• Compared to RPC, LRPC conducts
more than 2.5 time operations per
second.

• Compared to Taos, LRPC took 1/3 to
1/4 of time to complete.

• Performance under worst/uncommon
case, claimed to be negligible.

Lesson Learned for paper critics
• Lesson learned from this work:

• Identify the performance bottleneck
• Tackle the bottleneck with specialized

solution, not general solution.

Discussion
• Is this mechanism suitable for layer-designed or

single domain operating systems?

• eRPC (Embedded Remote Procedure Call) is a
Remote Procedure Call (RPC) system created
by NXP use Remote Procedure Calls (RPC) in
embedded multicore microcontrollers (eRPC).

Discussion
• On multi-core systems, the messages

could be sent from one core to
another core. Can we follow the
same approach to transfer the control
from one core to another one?

RPC for dockers
• Is there any benefit of using RPC

crossing dockers on the same
machine?

• What’s the challenge of enabling it?

Who Wrote the Paper

Background of the paper

• Year: 1990:
• Background: 10Mbs network, Intel 386/486: IA-32 (32-bits processors)
• RPC was developed in ’80
• Small/Micro-kernel was targeted in this paper.
• Borrow disjoined domain concept from distributed computing systems.
• On 6 August 1991, CERN, a pan European organization for particle

research, publicized the new World Wide Web project. The Web was
invented by British scientist Tim Berners-Lee in 1989.

• Observations:
• Most communication traffic is between domains in the same operating

systems.
• Most of communication traffic do not contain complex data structure.
• Conventional RPC has high overhead on small/micro kernel systems.

Motivation
• Message-based mechanism can serve the

communication needs of both local and remote
subsystems.

• However, it violates a basic tenet of basic
system design by failing to isolate the common
case.
• Ensure protection
• Isolating failure

• Separate normal case and worst case:
• Fast for normal cases; make progress for worst case

Remote Object Invocation
• An object hides its internal from the outside

world by means of well-defined interface.
• State: encapsulated data
• Method: operations, accessible through interface

• RPC principles could be applied to objects to
make the life easier.

• CORBA, COM/DCOM, and JINI are mature
object-based distributed system.

Remotes Objects
• Data (state) are kept on the server (remote site), not sent to the client.

• Consistence vs. Performance

Objects in Distributed Systems

• Compile-time Objects vs. Runtime Objects
• Compile-time objects are language dependent and easier to

build distributed systems.
• Run-time objects are language independent and are more

flexible.
• Adaptors are needed for run-time objects.

• Persistent Objects vs. Transient Objects
• A persistent object is not dependent on its current server.
• A transient object exists as long as the server that manages

the object.

Binding a Client to an Object

Distr_object* obj_ref; //Declare a system-wide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

 (a) Implicit Binding

Distr_object objPref; //Declare a system-wide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

 (b) Explicit Binding

Implementation of Object Reference

• How can the clients in a distributed system
find the remote objects?

• Simple solution:
• Giving each server and object a system-wide IDs.
• Build a reference table.

• What trouble you may find?
• The servers may crash.
• The servers may move from one machine to

another one.

Remote Method Invocation

• RMI is similar to RPC but it provides
system-wide method invocation.

• Static invocation
• Using interface definition language or
• Using object-based language and predefined

interface definitions.
• Dynamic invocation

• (Why/When do we need dynamic invocation?)

Parameter Passing
• The scenario when passing an object by reference or by value.

2-18

How to Improve Performance of RPC?

• With RPC, a three-phase protocol
lowers the processor performance ratio:
• Processor performance ratio: Tcomp/Tall =

Tcomp/(Tcomp+Tcomm)
• When the ratio is 0.1, the processor is idle

for 90% of the time.
• How to increase the ratio?

Von Eicken, T., Culler, D. E., Goldstein, S. C., &
Schauser, K. E. (1992). Active messages: a
mechanism for integrated communication and
computation. ACM SIGARCH Computer Architecture
News, 20(2), 256-266.

Traditional Messaging

Compute

Send

Compute

Recv

Request to send

Ready to receive

data

Active Messages
• Who wrote this paper?

• Berkeley CS Division – Thorsten Von Eicken, David E. Culler
(Professor in Computer Science at UC Berkeley),

• What are the background of this paper?
• 1992, Similar to Lightweight RPC. Work on large-scale multiprocessor

• What are the motivation of this paper?
• Overlap communication and computation and avoid buffering on

receiver
• New terms:

• Start-up Cost
• Three-phase Control

• How is the Active Messages different from RPC?
• RPC processes the enclosed data; active message extracts the

enclosed into proper location
• Limitation: Limitation: SPMD (Single Process, Multiple Data) /SMP

(Symmetric Multiple Processor)
• Performance results

Active Message

Send Right

Send Left

Compute

Recv Right

Recv Left

Send Right

Send Left

Compute

Recv Right

Recv Left

Message-Oriented Communication
• RPC and RMI hide communication in

distributed systems and enhance access
transparency.

• But,
• Client and server have to be on at the same time.
• Synchronous mechanism blocks the clients.

• So, here is message-oriented communication.

Persistence and Synchronicity in Communication

• General organization of a communication system in which hosts
are connected through a network

2-20

Message-Oriented Communication
• Alternatives

• Persistence: persistent communication vs. transient
communication.

• Synchronicity: asynchronous communication vs.
synchronous communication

• As an engineer, how do you choose the
communication protocol for message-oriented
communication application?
• Persistent asynchronous
• Transient asynchronous
• …

Persistence and Synchronicity in
Communication

2-22.1

Persistent asynchronous communication Persistent synchronous communication

Persistence and Synchronicity in
Communication

Transient asynchronous communication

2-22.2

Receipt-based transient synchronous
communication

Persistence and Synchronicity in
Communication

Delivery-based transient synchronous
communication at message delivery

Response-based transient synchronous
communication

Message-Oriented Transient Communication

• Socket is used for one-to-one communication.

• Message-passing-Interface (MPI) is used for
one-to-many communication.

socket

socket

bind listen accept

connect

read write close

readwrite close

Message Passing Interface
• A standard message passing specification for the vendors to implement

• Context: distributed memory parallel computers
• Each processor has its own memory and cannot access the memory of other

processors

• Any data to be shared must be explicitly transmitted from one to another

• Most message passing programs use the single program multiple data (SPMD)
model
• Each processor executes the same set of instructions

• Parallelization is achieved by letting each processor operate a different piece of data

• MIMD (Multiple Instructions Multiple Data): multiple program to process multiple
data

Example for SPMD

main(int argc, char **argv){

 if(process is assigned as Master role){

 /* Assign work and coordinate workers and collect results */

 MasterRoutine(/*arguments*/);

 } else { /* it is worker process */

 /* interact with master and other workers. Do the work and send
results to the master*/

 WorkerRoutine(/*arguments*/);

 }

}

The Message-Passing Interface (MPI)

• Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

MPI Basic Send/Recv
int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)
 buf: initial address of send buffer dest: rank of destination (integer)
 tag: message tag (integer) comm: communicator (handle)
 count: number of elements in send buffer (nonnegative integer)

 datatype: datatype of each send buffer element (handle)  

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

 status: status object (Status) source: rank of source (integer)

• status is mainly useful when messages are received with
MPI_ANY_TAG and/or MPI_ANY_SOURCE

Information about a Message
• count argument in recv indicates maximum length of

a message
• Actual length of message can be got using

MPI_Get_Count

 MPI_Status status;
 MPI_Recv(..., &status);
 ... status.MPI_TAG;
 ... status.MPI_SOURCE;
 MPI_Get_count(&status, datatype, &count);

Matrix Multiplication

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i-th column

j-th row

[i, j]

=x

do i = 1, n
 do k = 1, l
 do j = 1, m
 c(i,k) = c(i,k) + a(i,j)*b(j,k)
 end do
end do

end do

A B C

Matrix Multiplication -
Divide the work for distributed computing

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i-th row

j-th column

[i, j]

=x

A B C

(i+n)-th row

(j+m)-th column

…

[i+n, j+m]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i-th row

(j+m)-th
column

[i, j+m]

=x

A B C

(i+n)-th row

(j+2m)-th column

…

[i+n, j+2m]

Example: Matrix Multiplication Program
/* send matrix data to the worker tasks */

 averow = NRA/numworkers;
 extra = NRA%numworkers;
 offset = 0;
 mtype = FROM_MASTER;
 for (dest=1; dest<=numworkers; dest++) {
 rows = (dest <= extra) ? averow+1 : averow; // If # rows not divisible absolutely by # workers
 printf("sending %d rows to task %d\n",rows,dest); // some workers get an additional row
 MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD); // Starting row being sent
 MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD); // # rows sent

 count = rows*NCA; // Gives total # elements being sent
 MPI_Send(&a[offset][0], count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

 count = NCA*NCB; // Equivalent to NRB * NCB; # elements in B
 MPI_Send(&b, count, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);

 offset = offset + rows; // Increment offset for the next worker
 }

MASTER
SIDE

Example: Matrix Multiplication Program
(contd.)

/* wait for results from all worker tasks */

 mtype = FROM_WORKER;
 for (i=1; i<=numworkers; i++) // Get results from each worker
 {
 source = i;
 MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
 MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);

 count = rows*NCB; // #elements in the result from the worker
 MPI_Recv(&c[offset][0], count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);
 }

/* print results */

} /* end of master section */

MASTER
SIDE

Example: Matrix Multiplication Program
(contd.)

if (taskid > MASTER)
 { // Implies a worker node
 mtype = FROM_MASTER;
 source = MASTER;
 printf ("Master =%d, mtype=%d\n", source, mtype);
 // Receive the offset and number of rows
 MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
 printf ("offset =%d\n", offset);
 MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
 printf ("row =%d\n", rows);

 count = rows*NCA; // # elements to receive for matrix A
 MPI_Recv(&a, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);
 printf ("a[0][0] =%e\n", a[0][0]);

 count = NCA*NCB; // # elements to receive for matrix B
 MPI_Recv(&b, count, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

WORKER
SIDE

Example: Matrix Multiplication Program
(contd.)

for (k=0; k<NCB; k++)
 for (i=0; i<rows; i++) {
 c[i][k] = 0.0; // Do the matrix multiplication for the # rows you are assigned to
 for (j=0; j<NCA; j++)
 c[i][k] = c[i][k] + a[i][j] * b[j][k];
 }

 mtype = FROM_WORKER;
 printf ("after computing \n");

 MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
 MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);

 MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD); // Sending the actual result

 printf ("after send \n");

 } /* end of worker */

WORKER
SIDE

Asynchronous Send/Receive
• MPI_Isend() and MPI_Irecv() are non-blocking; control

returns to program after call is made

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request
*request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request
*request)

request: communication request (handle); output parameter

Detecting Completions
• Non-blocking operations return (immediately) “request

handles” that can be waited on and queried
• MPI_Wait waits for an MPI send or receive to complete
int MPI_Wait (MPI_Request *request, MPI_Status *status)

• request matches request on Isend or Irecv
• status returns the status equivalent to status for

MPI_Recv when complete
• blocks for send until message is buffered or sent so

message variable is free
• blocks for receive until message is received and ready

Detecting Completions
(contd.)

• MPI_Test tests for the completion of a send or receive
 int MPI_Test (MPI_Request *request, int *flag,

MPI_Status *status)
• request, status as for MPI_Wait
• does not block
• flag indicates whether operation is complete or not
• enables code which can repeatedly check for

communication completion

Multiple Completions
• Often desirable to wait on multiple requests; ex., A master/

slave program
int MPI_Waitall(int count, MPI_Request array_of_requests[],

MPI_Status array_of_statuses[])
int MPI_Waitany(int count, MPI_Request array_of_requests[], int

*index, MPI_Status *status)
int MPI_Waitsome(int incount, MPI_Request array_of_requests[],

int *outcount, int array_of_indices[], MPI_Status
array_of_statuses[])

• There are corresponding versions of test for each of these

Message-Oriented Persistent
Communication

• Message-oriented middleware service does not require either
the sender or receiver to be active during message
transmission.

• What applications are suitable for message-oriented persistent
communication?
• what can wait for minutes.
• what may not always be on and require robust communication

• Message-Queuing Model
• Messages are inserted into specific queues, forwarded over a

series of communication servers, and eventually delivered to the
destination.

• No guarantee are given about when, or even if the message will
actually be read.

Message-queuing Systems – a persistent
asynchronous communication

2-26

General Architecture of a Message-Queuing System (1)

The relationship between queue-level addressing and
network-level addressing.

The database could cause network problem when
the system is scaled up.

General Architecture of a Message-Queuing System (2)

The general organization of a message-queuing system with
routers.

2-29

Heterogeneous Message Format
• The sender and receiver have to agree on the

message format.
• This approach may work for other protocols but not

for message passing.
• When it is not possible to have a common format, a

re-formatter is needed.
• One example is the distributed heterogeneous

database systems.
• A query may need to be executed on more than one

database.
• The query is divided into several sub-queries and the results

are collected at the end.

Message Brokers

2-30

Stream-Oriented Communications
• Timing has no effect on correctness for RPC, RMI,

and message passing.
• In many applications, timing plays a crucial role. One

example is audio/video stream.
• Transmission modes:

• Asynchronous transmission mode
• Synchronous transmission mode
• Isochronous transmission mode

• Stream types:
• Simple stream
• Complex stream

Data Streams

Multicasting Stream

• Filters can be used to adjust the QoS level of the streams
from high quality to low quality.

Quality of Service for Streams
• QoS can be used to specify the time-dependent (or other non-functional) requirements.
• QoS Application Level: Flow Specification

• Time-dependent requirements
• Services requirements:

• Loss Sensitivity
• Loss interval
• Loss sensitivity

• Minimal delay noticed
• Maximum delay variation
• Quality of guarantee:

Characteristics of the Input Service Required

� Maximum data unit size (bytes)
� Token bucket rate (bytes/sec)
� Toke bucket size (bytes)
� Maximum transmission rate (bytes/

sec)

� Loss sensitivity (bytes)
� Loss interval (µsec)
� Burst loss sensitivity (data units)
� Minimum delay noticed (µsec)
� Maximum delay variation (µsec)
� Quality of guaranteeFlow Specification

Token Bucket Algorithm

Quality of Service Specification
• Such detailed flow specification will never be

acceptable for end-users.
• DSLR vs. Point-and-Shot (or latest digital camera)
• To be a good engineer, you have to talk to the end-

users.
• To guarantee the QoS, the resources have to be

reserved. However, there is
• no universal model for specifying QoS parameters,
• no generic model for describing the resources, and
• no model for translating QoS parameters to resource usage.

Resource Reservation Model - RSVP

1

2

3

3

4

Synchronization Mechanisms

• The image and audio have to read alternatively for every 33 msec.
• The application is responsible for synchronizing the streams.

Synchronization Mechanisms (2)
• The principle of synchronization as supported by high-level

interfaces.

2-41

MPEG2 Synchronization Protocol

+ +

Video

Subtitle

Audio

Video

Subtitle

Audio

90Hz Networking

Summary
• Powerful and flexible facilities for communication are essential

for any distributed system.
• RPCs are aimed at achieving access transparency.
• RMIs allow system-wide object reference to be passed as

parameters.
• Message-oriented protocol provides more general purpose and

high-level model.
• Communication could be

• Persistent or temporary
• Synchronous or Asynchronous

• Stream-oriented model aims at timing requirement for end-to-
end communication.

Reading Lists
• Reading Lists for RPC and Message passing:

• Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. 1990.
Lightweight remote procedure call. ACM Trans. Comput. Syst. 8, 1 (February 1990), 37-55.

• D. D. Clark and D. L. Tennenhouse. 1990. Architectural considerations for a new generation of
protocols. In Proceedings of the ACM symposium on Communications architectures \&
protocols (SIGCOMM '90). ACM, New York, NY, USA, 200-208.

• T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: a user-level network interface for
parallel and distributed computing (includes URL). SIGOPS Oper. Syst. Rev. 29, 5 (December
1995), 40-53.

• Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. 1992.
Active messages: a mechanism for integrated communication and computation. In
Proceedings of the 19th annual international symposium on Computer architecture (ISCA '92).
ACM, New York, NY, USA, 256-266.

• R. Graham, T. Woodall, and J. Squyres, Open MPI: A Flexible High Performance MPI, Lecture
Notes in Computer Science, 2006, Volume 3911, pp. 228-239 (2006)

• Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003.
The many faces of publish/subscribe. ACM Comput. Surv. 35, 2 (June 2003), 114-131.

• Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur, Fine-
Grained Multithreading Support for Hybrid Threaded MPI Programming, International Journal
of High Performance Computing Applications February 2010 vol. 24 no. 1 49-57.

• Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick Crowley,
Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named data networking.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 66-73.

Efficiently Reading Scientific Papers (1/2)

• Read for breadth
• What did they do?
• Skim introduction, headings, graphics, definitions,

conclusions and bibliography.
• Consider the credibility.
• How useful is it?
• Decide whether to go on.

• Read in depth
• How did they do it?
• Challenge their arguments.
• Examine assumptions.
• Examine methods.
• Examine statistics.
• Examine reasoning and conclusions.
• How can I apply their approach to my work?

Efficiently Reading Scientific Papers
(2/2)

• Take notes
• Make notes as you read.
• Highlight major points.
• Note new terms and definitions.
• Summarize tables and graphs.
• Write a summary.

• Reference:
• “How to read a computer science research paper”

by Admanda Stent.
• 如何閱讀⼀本書，Mortimer J. Adler and Charles

Van Doren 著，郝明義與朱衣譯，台灣商務印書館。

Writing Critics
• You may want to including the following topics but

not limited to.
• How useful is it? What’s its contribution?
• Highlight major points/contribution:
• Questioning and discussing its

• Assumptions,
• Methods,
• Statistics, and
• reasoning and conclusions.

• Proof read it before you submit.

