
Distributed Operating Systems

Prof. Chi-Sheng Shih
Graduate Institute of Networking and Multimedia

Department of Computer Science and Information
Engineering

National Taiwan University

Cloud Computing

High Performance Computing

Are they the same?

Cloud Computing = High Performance
Computing?

• Shared properties:
• Large amount of computation

resources are interconnected to
provide coherence services.

• Located in a server room/data center
and connected via networks.

Workloads

• Real-time Weather forecast

• Nuclear fusion research

• Stock trading

• Facebook

• Online Gaming

Workloads
• Real-time Weather forecast:

• Large amount of data, short latency (< 10s)
• Nuclear fusion research

• Low latency, generating large amount of data during and
after the workload,

• Stock trading
• Real-time response (< 10-2s), 106 requests per second,

guaranteed ordering.
• Facebook

• 103 of participants per message, long latency, guaranteed
ordering, and number of messages increase over time.

• Online Gaming
• Short latency (< 1s), 103 of players per games, number of

games increase over time.

Performance

Scalability

HPC vs. Cloud Computing
• High performance computing:

• The majority of the workloads are computation intensive and
can only tolerate short latency among sub-workloads.

• The systems are built with high performance processors, and
high bandwidth bus. However, it is not easy to add additional
computation resources.

• Cloud Computing:
• The majority of the workloads can be partitioned and

conducted independently.
• The systems are built with low cost processors, and

computer networks. However, it is designed to add/remove
computation resources at any time.

• The performance are improved by adding more computation
resources.

• HPC and Cloud Computing are distributed computing in general.

Why distributed computing systems?

• Personal computers are cheap and powerful.
• Why bother to use distributed computing systems?

• (Do you use peer-to-peer file sharing/streaming?)
• Broadband connection is becoming popular and costs a little
• Inherently distributed applications
• Communication and resource sharing are possible
• Economics – price-performance ratio
• Higher reliability
• Scalability
• Potential for incremental growth

• What should be done to make it possible/better?
• Distribution-aware platforms, operating systems and applications.
• Security and privacy.

Distributed Computing System Models

• A distributed system:
• Multiple connected processors/computing devices working

together.
• A collection of independent computers that appear to its

users as a single coherent system

• Examples of distributed computing system models:
• Minicomputer Model
• Workstation Model
• Workstation-server Model
• Processor-pool Model
• Hybrid Model

• Multiprocessor dimensions
• Memory: could be shared or be private to each CPU
• Interconnect: could be shared (bus-based) or switched

• A bus-based multiprocessor.

• Q: What are the potential problem for
bus-based multiprocessor?

Hardware Concepts: Multiprocessors (1)

Multiprocessors (2)
a) A crossbar switch b) An omega switching network

Homogeneous Multicomputer
Systems

a) Grid b) Hypercube

Distributed Systems Models
• Minicomputer model (e.g., early networks)

• Each user has local machine
• Local processing but can fetch remote data (files, databases)

• Workstation model (e.g., Sprite)
• Processing can also migrate

• Client (workstation)- server Model (e.g., V system, world wide
web)
• Each user has local workstation
• Powerful workstations serve as servers (file, print, DB servers)

• Processor pool model (e.g., Amoeba, Plan 9)
• Terminals are Xterms or diskless terminals
• Pool of backend processors handle processing

• Cloud Computing
• Relationship between client and servers changes over time.
• Computation capacity on servers are dynamically adjustable.

Distributed Operating Systems

• What’s an operating system?
• To present users with a virtual environment that is

easier to program than the underlying hardware.
• To manage the various resources of the system.

Uniprocessor Operating Systems

• An OS acts as a resource manager or an arbitrator
• Manages CPU, I/O devices, memory

• OS provides a virtual interface that is easier to use than
hardware

• Structure of uniprocessor operating systems
• Monolithic (e.g., MS-DOS, early UNIX)

• One large kernel that handles everything
• Layered design

• Functionality is decomposed into N layers
• Each layer uses services of layer N-1 and implements new

service(s) for layer N+1

Uniprocessor Operating Systems
Microkernel architecture
• Small kernel
• user-level servers implement additional functionality

Distributed Operating Systems

• The operating system for distributed
computing systems:
• Network operating systems
• Distributed operating systems

Types of OSs for distributed systems

System Description Main Goal

DOS
Tightly-coupled operating system for multi-
processors and homogeneous multicomputers

Hide and manage
hardware resources

NOS
Loosely-coupled operating system for
heterogeneous multicomputers (LAN and WAN)

Offer local services to
remote clients

Middleware
Additional layer atop of NOS implementing
general-purpose services

Provide distribution
transparency

Distributed Operating Systems
• Each computing unit has its own hardware (including memory, CPU, and

IO devices)
• A distributed operating system

• looks like a uni-processor operating system but operates on multiple
independent computing units

• manages multiple computing units transparently to the user

Network Operating System

1-19

Network Operating System

• Employs a client-server model
• Minimal OS kernel
• Additional functionality as user processes

Middleware-based Systems
• General structure of a distributed system as middleware.

Network OS vs. Distributed OS

Network OSs Distributed OSs

System Image
A collection of distinct

machines connected by a
communication subsystem.

A virtual uniprocessor
system.

Autonomy
Each computer functions
independently of other

computers.

Processes and resources
are managed globally.

Fault tolerance
capability Little or no fault tolerance. High fault tolerance.

Goals of developing distributed
systems

• Connecting Users and Resources
• Transparency
• Openness
• Scalability
• Flexibility
• Reliability
• Performance

Transparency in Distributed Systems
Transparency Description

Access
Hide differences in data representation and how a resource is
accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation
Hide that a resource may be moved to another location while in
use

Replication
Hide that a resource is replicated.

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

Transparency in Distributed Systems
Transparency Description

Access Hide differences in data representation and how a
resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location
while in use

Replication Hide that a resource is replicated.

Concurrency Hide that a resource may be shared by several
competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on
disk

Openness

• An open distributed system offers services
according to standard rules.

• Services are generally specified through
interfaces in Interface Definition Language.
• Completeness
• Neutrality

• Distributed services should have
• Interoperability and
• Portability

Reliability
• A fault in a system may cause system failure. Multiple

resources may not be able to increase the system reliability.
• Fail-stop failure
• Byzantine failure

• Fault-handling mechanisms:
• Fault Avoidance
• Fault Tolerance

• Redundancy technique
• Distributed control

• Fault Detection and Recovery
• Atomic transaction
• Stateless servers
• Acknowledgements and timeout-based retransmission of

messages.

Byzantine failure
• A Byzantine Fault is an incorrect operation (algorithm) that occurs in

a distributed system that can be classified as:
• Omission Failure – a failure of not being present such as failing

to respond to a request or not receiving a request.
• Execution Failure or Lying – a failure due to sending incorrect or

inconsistent data, corrupting the local state or responding to a
request incorrectly.

• Examples
• Round off errors passed from one function to another and

then another, etc.
• Corrupted system databases where the error is not detected

Compiler errors
• An undetected bit flip producing a bad message.

• This is a worse case model since the Byzantine Fault can generate
misleading information causing a maximum of confusion.

Flexibility
• Why flexibility is an important feature of a distributed

operating system?
• Ease of modification
• Ease of enhancement

• A flexible distributed system should be organized as a
collection of relatively small and easily replaceable or
adaptable components.

• Separating policy from mechanism
• Web caching

• Policy=?
• Mechanism=?

• Distributed systems vs. centralize systems
• Google search

Performance

L Barroso, J Dean, U Hoezle, Web Search for a Planet: The Architecture of the Google
Cluster, - IEEE Micro, 2003.

How fast can you sort?

• Sort is a fundamental function for data analysis.

• Minute Sort:
• Amount of data that can be sorted in 60.00

seconds or less.
• Gray Sort:

• How much time taken to sort 100TB data?
• Joule Sort: Amount of energy to sort 1010 (10

giga) records.

Latest Results for Sort Benchmark

Minute Sort: How much data one can sort in one minute?

Gray: How much time it takes to sort 100TB?

2019 competition submission was closed on September 1, 2019.

M
in

ut
eS

or
t (

G
B)

0

10,000

20,000

30,000

40,000

2006 2007 2009 2012 2014 2015 2016

37,000

7,700
3,700

1,40150021440

Trend of Minute Sort

Status of Minute Sort
• 2016:

• Winner: Tencent Corporation, China
• 37 TB TB/min using 512 nodes x (2 OpenPOWER 10-core POWER8 2.926 GHz, 512 GB

memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD,
• 2015:

• Winner: FuxiSort by AliBaba
• 7.7 TB using 3,134 nodes x (2 Xeon E5-2630 2.30Ghz, 96 GB memory, 12x2 TB SATA HD,

10 Gb/s Ethernet) + 243 nodes x (2 Xeon E5-2650v2 2.60Ghz, 128 GB memory, 12x2 TB
SATA HD, 10 Gb/s Ethernet)

• 2014:
• Winner: DeepSort by Zheng Li, Juhan Lee, Samsung.
• 3.7 TB using 384 nodes of 2x2.1GHz Intel Xeon, 64GB memory, and 8 HDs

• 2012:
• Winner: Flat Datacenter Storage from Microsoft Research
• 1,401 GB using 256 nodes

• 2009:
• Winner: Hadoop from Yahoo
• 500GB using 1406 nodes x (2 quad core Xeons, 8GB memory, 4 SATA HDs)

• 2007: 214BGB
• 2006: 40GB
• 2004: 34GB

Latest Results for Sort Benchmark

http://sortbenchmark.org/

Performance
• Distributed systems vs. centralize systems

• Google search
• How can the performance of a distributed

system be as good as a centralized system?
• Batch if possible
• Cache whenever possible
• Minimize copying of data
• Minimize network traffic
• Take advantage of fine-grain parallelism for

multiprocessing

L Barroso, J Dean, U Hoezle, Web Search for a Planet: The Architecture of the Google
Cluster, - IEEE Micro, 2003.

Scalability Problems

Examples of scalability limitations.

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms Doing routing based on complete information

Scalability Problems
• Decentralized algorithms should be used.

• No machine has complete information about the
system state.

• Machines make decisions based only on local
information.

• Failure of one machine does not ruin the algorithm.
• There is no implicit assumption that a global clock

exists.
• Geographical scalability:

• LAN vs. WAN.

Comparison between Systems

Item
Distributed OS

Network
OS

Middleware-
based OS

Multiproc Multicomp

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication
Shared
memory Messages Files Model specific

Resource management Global, central
Global,

distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

Additional Readings
• David L. Cohn, William P. Delaney, Karen M. Tracey, ARCADE: A Platform

for Heterogeneous Distributed Operating Systems, Proceedings of the
Symposium on Experiences with Distributed and Multiprocessor Systems,
1989, 373-390.

• Douglis, F., Ousterhout, J.K., Kaashoek, M.F., and Tanenbaum, A.S.,
Comparison of Two Distributed Systems: Amoeba and Sprite, Computing
Systems Journal 4(Fall), 1991, 353-384.

• L Barroso, J Dean, U Hoezle, Web Search for a Planet: The Architecture of
the Google Cluster, IEEE Micro, Volume: 23, Issue: 2, March-April, 2003,
22- 28.

• Thain, D., Tannenbaum, T. and Livny, M. (2005), Distributed computing in
practice: the Condor experience. Concurrency and Computation: Practice
and Experience, 17: 323–356. doi: 10.1002/cpe.938

• B Hayes, Cloud Computing, Communication of ACM, Vol. 51, Issues 7,
July 2008.

• Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. 2013. Unikernels: library operating systems for the cloud.
SIGARCH Comput. Archit. News 41, 1 (March 2013), 461-472.

• Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu,
Yangyu Tao, Chao Li, Jingren Zhou, and Hong Tang, FuxiSort, file: http://
sortbenchmark.org/FuxiSort2015.pdf

http://sortbenchmark.org/FuxiSort2015.pdf
http://sortbenchmark.org/FuxiSort2015.pdf
http://sortbenchmark.org/FuxiSort2015.pdf
http://sortbenchmark.org/FuxiSort2015.pdf

Before next class
• Reading assignment:

• Anil Madhavapeddy, Richard Mortier, Charalampos
Rotsos, David Scott, Balraj Singh, Thomas Gazagnaire,
Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: library operating systems for the cloud.
SIGARCH Comput. Archit. News 41, 1 (March 2013),
461-472.

• Brian N. Bershad, Thomas E. Anderson, Edward D.
Lazowska, and Henry M. Levy. 1990. Lightweight remote
procedure call. ACM Trans. Comput. Syst. 8, 1 (February
1990), 37-55.

