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W h t t C I d The ability to manipulate the
a O ove r O ay (X X} environment through vision is
essential for robots. In this talk,

| will give an overview of our
recent work that applies vision

and learning in robotic object

Self-SU pe rVised Lea 'n I ng (SS I—) manipulation. First, | will present

our work on learning human- Dr. Yu-Wei Chao
e SSL Beyond I mages robot object handover, a critical Senior Research Scientist
task for human-robot interaction NVIDIA Seattle Robotics Lab
. . . Second, | will show how we
DO m a | n G e n e ra I |Zat | 0 n design and train vision models

for robots to rearrange objects.

Federated Learning

Invited Talk Vision and Learning for

* Vision and Learning for Robotic Manipulation
RO bOtIC M an | pU |atI0n Tuesday December 13t / BL-112 / 11:10am - 12pm (Host: Prof. Frank Wang)
* Dr. Yu-Wei Chao S —
. . Yu-Wei Chao is a Senior Research Scientist at
Sr. Resea rCh SC|ent|St NVIDIA Seattle Robotics Lab. He received his
. Ph.D. in Computer Science and Engineering
NVDIA Seattle RObOthS La b from the University of Michigan. His research

lies in the intersection of computer vision,

machine learning, robotics, and simulation.

He is a recipient of the Google Ph.D. Fellowship
and an ICRA Best Paper Award on Human-
Robot Interaction.




Remarks

e Final Challenge
« Date: Thursday, Dec. 29th
* Location: TBD
e Cash Prize: NTD $10K/5K/3K for the top 3 teams
* Snack boxes will be provided

- HIARAEERASE
« ePoE2 B FEIZHE https://if163.aca.ntu.edu.tw/eportfolio/
o HIRZEE R FE https://investea.aca.ntu.edu.tw/opinion/login.asp
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Self-Supervised Learning (SSL)

* Learning discriminative representations from unlabeled data

* Create self-supervised tasks via data augmentation
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Self-Supervised Learning (SSL)

 Self-Supervised Pretraining (e.g., pretext training or contrastive learning)
* Pretext Tasks

e Jigsaw (ECCV’16) :

* RotNet (ICLR’18) :

* Contrastive Learning E

|

|

Self-supervised Pretext Task Training
Unlabeled Dataset

« CPC (ICML"20)
e SimCLR (ICML’20)
* Learning w/o negative samples

* BYOL (NQUF'PS’ZO) Supervised Downstream Task Training
 Barlow Twins (ICML'21) L"'“E'E" et

E.D

Knowledge Transfer

e Supervised Fine-tuning .
Downstream
Tazk




SSL Beyond Image Data

e What about videos?

 What about noisy data? Jiet al., Learning to Learn from Noisy Labeled Data, CVPR 2019
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What to Cover Today...

e Domain Generalization



Recap: Domain Adaptation

 Domain-Adversarial Training of Neural Networks (DANN)
* Y. Ganin et al., ICML 2015
Maximize domain confusion = maximize domain classification loss
Minimize source-domain data classification loss
The derived feature f can be viewed as a disentangled & domain-invariant feature.
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Recap: Meta Learning = Learning to Learn

* A powerful solution for learning from few-shot data

e Let’s consider the following “2-way 1-shot” learning scheme:

Task i
Meta-Training -

Task i+1

1 Novel
Meta-Testing Task

Support set
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Apple (+) Orange (-)

Mﬂu—m.:
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Slide credit: H.-Y. Lee
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Supportset Query set

. -Taski Tn:{r;i/ -.‘ Toet
Recap: ¥ v L

Training Tasks 1

Learn to Compare - ] O
with the Representative Ones! . —
Testing Task Train WO E Test d @ E

Bike(+)  Car farH Bike(+)  Car()

* Prototypical Networks
* Learn a model which properly describes data in terms of intra/inter-class info.

* It learns a prototype for each class, with data similarity/separation guarantees.
For DL version, the learned feature space is derived by a non-linear mapping fg
and the representatives (i.e., prototypes) of each class is the mean feature vector c;,.

support set

S = {(x ¥}z

Meta-Training Stage

Base class data
(Many) Feature
/ —— !

extractor ;_C_:_I_a_\_s_§!f!g_r

—Y
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Novel class data Fixed @
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Domain Generalization

* Input: Images and labels from multiple source domains

* Output: A well-generalized model for unseen target domains
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Strategy of Episodic Training

 Episodic training for domain generalization (ICCV’19)

e Generalize across domains via Meta-Learning
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Zhang et al. : Episodic training for domain generalization. In ICCV (2019)



Episodic Training (cont’d)
* Motivation

Domain Specific Models

| B4

e - Episodic Aggregated Model
training

_— Feat. Ext. (8;) —— Classifier (1p;) — Loss
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Episodic Training (cont’d)

 Random sample two domains, e.g., Photo and Cartoon
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Episodic Training (cont’d)

 Random sample two domains, e.g., Photo and Cartoon

4 Photo Domain Specific Branches )
~ Cartoon
............... - FE'at E){t {H_J) 3
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Ep

isodic Training (cont’d)

o

--------------------
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* Input: Images and labels from multiple source domains
* Output: A well-generalized model for unseen target domains

Experiments




Experiments (cont’d)

* Domain Generalized Classification

Source Target | DICA [26] LRE-SVM[3] D-MTAE[I2] CCSA[25] MMD-AAE([20] DANN[I!] MLDG[!%] CrossGrad[3)] MetaReg[!] AGG Epi-FCR
0,123 4 61.5 758 78.0 758 79.1 75.0 70.7 716 742 731 769
0124 3 725 86.9 923 923 94.5 94.1 93.6 93.8 94.0 942 948
0134 2 74.7 84.5 912 945 95.6 973 975 95.7 96.9 957 990
0234 1 67.0 834 90.1 912 934 954 954 942 97.0 957 980
1234 0 714 923 934 96.7 96.7 95.7 936 94.0 94.7 944 963

Ave. 69.4 84.6 87.0 90.1 91.9 915 90.2 89.9 914 906 930
Table 1: Cross-view action recognition results (accuracy. %) on IXMAS dataset. Best result in bold.

Source Target | DICA[26] LRE-SVM[3] D-MTAE[12] CCSA[25] MMD-AAE[20] DANN[II] MLDG[!%] CrossGrad[3?] MetaReg[l] AGG Epi-FCR
LCS V 63.7 60.6 639 67.1 67.7 66.4 617 65.5 65.0 654 671
VCS L 582 59.7 60.1 62.1 62,6 64.0 613 60.0 60.2 606 643
VLS C 79.7 88.1 89.1 923 944 92.6 944 920 923 93.1 4.1
VLC S 61.0 549 613 59.1 64.4 63.6 65.9 64.7 642 658 659

Ave. 65.7 65.8 68.6 70.2 723 717 723 70.5 704 712 729
Table 2: Cross-dataset object recognition results (accuracy. %) on VLCS benchmark. Best in bold.
18
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What to Cover Today...

* Federated Learning



Outline

Introduction to Federated Learning
Federated Learning on Non-IID Data Silos

Beyond Supervised Federated Learning
* Semi-supervised
e Self-supervised

Personalized Federated Learning
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Why Federated Learning?

* Data privacy issue becomes a growing concern in modern Al services

* Regulations like CCPA (California) or GDPR (Europe) restrict data
transmission across different data sources

i
kX
)% % <

Centralized Learning
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Federated Learning

e Collaborative learning without centralizing data

e Share model weights instead of raw data (or features)!

* Model training occurs locally at each participant/client
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Federated Learning



Federated Learning (cont’d)

* Training models collaborately without sharing the raw data

* FedAvg:
* Local client training using private data

Lo
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Clientl Client2 Clientk
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Federated Learning (cont’d)

* Training models collaborately without sharing the raw data
* FedAvg:

* Local client training using private data --> Server aggregation (i.e., averaging)

Server
K
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k
Model aggregation ;tk Wi
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Federated Learning (cont’d)

* Training models collaborately without sharing the raw data
* FedAvg:

* Local client training using private data --> Server aggregation (Averaging)
--> Broadcast to clients (then iterate)
Server

K
w =Z /‘].ka
k

Model aggregation /1k Wi

Aawy
/ﬁz W»

) |y

Client1 Client2 Clientk

w,

S
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Outline

e Federated Learning on Non-1ID Data Silos



Non-|ID Data

* In real-world FL applications, data distributions among different clients
are usually Non-Independently and Identically Distributed (non-IID)

* For example:
* Class/label distribution skew

L
ug

(R

Participant 1 Participant 2 Participant N



Non-11D Data (cont’d)

* In real-world FL applications, data distributions among different clients
are usually Non-Independently and Identically Distributed (non-IID)

* For example:

e Domain shift
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Non-11D Data (cont’d)

* In real-world FL applications, data distributions among different clients
are usually Non-Independently and Identically Distributed (non-1ID)

* For example:
e Label distribution skew
e Domain shift

* Models trained on such data are hard to achieve global optima

a IID Data b Non-IID Data
o T
1
2 rdl
W{ Wf+1 * Wt Wl i
""”. L] . 1
w
w t t _v@ H
@ OwtA W @ e
@ — i
wj .WZHI 2 wi Q. w;
@ Local model Local optima — Client update

. Global model A Global optima » Server update
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Tackling Non-1ID Data (cont’d)

* Limiting the impacts of heterogeneous local updates

* FedProx:
Add a proximal term to force the local model to be closed to the
global model

o min (w5 ') = Fi(w) + & flw = w2

| model weight w that satisfy:

Proximal term



Tackling Non-1ID Data (cont’d)

* Limiting the impacts of heterogeneous local updates

* SCAFFOLD: Correcting local gradient to avoid client drift

Client 1 optimal

wy ! .
= I Local gradient
|
Correction

.,,,” .,”J.‘ ;v | Client update

Global optimal
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Tackling Non-1ID Data (cont’d)

* Limiting the impacts of heterogeneous local updates

* MOON: Enforce local features to be similar to global features
* (local model t, global model t) --> positive
* (local model t, local model t-1) --> negative

local model t-1
1

: I base encoder
" B projection head
: T output layer

exp(sim(z, zg10)/7)
exp(sim(z, zgi0b) /T) + exp(sim(z, Zprew)/T)

T

local model t

32



Outline

* Beyond Supervised Federated Learning
* Semi-supervised
e Self-supervised



Federated Semi-Supervised Learning (FSSL)

 Some labeled clients, and other unlabeled clients

) o [,
| supervised D N
i \

learning

Central server

& : Data parivacy

: Model

Unlabeled chents
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FSSL Baseline Method

* Labeled clients: use standard cross-entropy loss

* Unlabeled clients: use consistency loss

___________ E supel"vised
learning

Labeled clients N
7
A
/ Central server

| supervised | %] g0
1 rd
Nz

learning & : Data parivacy

: Model

Unlabeled clients

Weakly-
augmented

Prediction
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example

Strongly-

augmented Prediction
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FedIRM

e Labeled clients use class-correlation matrix
to guide the learning of unlabeled clients

disease relation estimation
N at labeled clients

e o
E f
E A
i i
8 = L WA
Labeled clients . disease relation matrix\X,
— (@
|| assist reliable estimation at unlabeled e
S —  clients vy
R gg———— J Central server
P ) ¢ e o
i s | on@*®
Ay @ i H c
i i - i__+ ]‘ u u
Li | Lirat = 5 Y (Lkn(MellME) + Lin(ME] M)
| ) c=1
O Uniabeied ciients
Inter-client Relation Matching
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FedIRM (cont’d)

e Labeled clients use class-correlation matrix
to guide the learning of unlabeled clients

[ ]
disease relation estimation
N at labeled clients

Per-category mean feature
Nl
e MR -
= 4 - V=

c— NI Z l[ygzc]fel(wi) Vf: € R¢
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» | ‘\‘ * Soft label distribution
Labeied clients - disease relation mamxl‘*:“
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Inter-client Relation Matching

Lirm = 5; (LxL(Mc||IMT) + LxrL(ME|IM.))
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Federated Self-Supervised Learning

* Learn useful representation from distributed unlabeled data

* FedEMA

e Local training: apply BYOL for local training

* Update online network (student) with divergence-aware EMA
* If Wy is similar to W, update W,
* Otherwise, keep W), unchanged for retaining local knowledge

Global Encoder Global Predictor
W, Wy
ro__ r—1 . T
Server \ l Wk - “Wk + (1 M)Wg’
Client k -1
) ; WP = yWPT 1 — ) )Wer
Online Encoder L ol Predicior Wf k uwy —1—( p,) e
Wi ‘l n
mage” Augmentation | EMA Pimg o W = min(A||W - WY, 1),
v llyall - Nl
Target Encoder 1 T Y2
I

i) t
Wi stop-gradient



Outline

Introduction to Federated Learning
Federated Learning on Non-IID Data Silos

Beyond Supervised Federated Learning
* Semi-supervised
e Self-supervised

Personalized Federated Learning
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Personalized FL (PFL)

* |n real-world scenarios, a customized model for each client
would be desirable

* E.g., advertising recommendation system customized for different users

* What to personalize in FL?
* Personalized aggregation strategy
* Personalized layers



Personalized Aggregation Strategy

* BN layers (white) describe client-specific data distribution (, r)

» Shared layers (colored) are uploaded for weighted aggregation

e (Clients with similar distribution would contribute more
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Personalized Layers

FedRep

Each personalized model contains
« Shared global feature extractor ¢: R% — R
* Personalized classification head h: R* — y

Local update for client i:
1. Fix ¢, train h for T epochs

server

1
2. Fix hf, train ¢! for 1 epoch o= ZE %%
1€t
* Server aggregation: ot S " N\
'o¢1i+l qbf:r—l “‘

* Collect ¢!, ..., @t from clients
+ @' = Avg (o1, -, 0n)

client 1 client n
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What We’ve Covered This Semester...

* NN & CNN

* Object Detection & Semantic Segmentation

* Generative Model & GAN

* Diffusion Model

* Transfer Learning (Domain Adaptation & Generalization)
* RNN & Transformer

|

* Vision & Language
* Few-Shot Learning
* 3D Vision

* Federated Learning
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