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What to Cover Today…

• Self-Supervised Learning (SSL)
• SSL Beyond Images

• Domain Generalization

• Federated Learning
• Invited Talk

• Vision and Learning for 
Robotic Manipulation

• Dr. Yu-Wei Chao
Sr. Research Scientist
NVDIA Seattle Robotics Lab
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Remarks

• Final Challenge
• Date: Thursday, Dec. 29th

• Location: TBD
• Cash Prize: NTD $10K/5K/3K for the top 3 teams
• Snack boxes will be provided

• 期末教學意見調查
• ePo學習歷程檔 https://if163.aca.ntu.edu.tw/eportfolio/
• 期末教學意見調查 https://investea.aca.ntu.edu.tw/opinion/login.asp
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Self-Supervised Learning (SSL)
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• Learning discriminative representations from unlabeled data

• Create self-supervised tasks via data augmentation

Rotation
90。 Jigsaw Puzzle

Colorization



Self-Supervised Learning (SSL)
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• Self-Supervised Pretraining (e.g., pretext training or contrastive learning)
• Pretext Tasks

• Jigsaw (ECCV’16)
• RotNet (ICLR’18)

• Contrastive Learning
• CPC (ICML’20)
• SimCLR (ICML’20)

• Learning w/o negative samples
• BYOL (NeurIPS’20)
• Barlow Twins (ICML’21)

• Supervised Fine-tuning



SSL Beyond Image Data
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• What about videos?

• What about noisy data? J. Li et al., Learning to Learn from Noisy Labeled Data, CVPR 2019
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Recap: Domain Adaptation

• Domain-Adversarial Training of Neural Networks (DANN)
• Y. Ganin et al., ICML 2015
• Maximize domain confusion = maximize domain classification loss
• Minimize source-domain data classification loss
• The derived feature f can be viewed as a disentangled & domain-invariant feature.
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Recap: Meta Learning = Learning to Learn
• A powerful solution for learning from few-shot data

• Let’s consider the following “2-way 1-shot” learning scheme:
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Meta-Training
Cat (+) Dog (-)

Meta-Testing

Train Test

Train Test

Train Test

Task i

Task i+1

Support set Query set

…

Cat (+) Dog (-)

Apple (+) Orange (-) Apple (+) Orange (-)

Bike (+) Car (-) Bike Car

Predict: 
+ or -

Predict: 
+ or -

Bike 
as + or -? 

Slide credit: H.-Y. Lee

Novel 
Task



Recap: 
Learn to Compare
with the Representative Ones!

• Prototypical Networks
• Learn a model which properly describes data in terms of intra/inter-class info.
• It learns a prototype for each class, with data similarity/separation guarantees.

For DL version, the learned feature space is derived by a non-linear mapping 𝑓𝑓𝜃𝜃
and the representatives (i.e., prototypes) of each class is the mean feature vector 𝐜𝐜𝑘𝑘.
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𝑓𝑓𝜙𝜙

𝑓𝑓𝜙𝜙

𝑓𝑓𝜙𝜙

support set     
𝑆𝑆 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1

𝑘𝑘Meta-Training Stage

Meta-Testing Stage

, where 𝑆𝑆𝑘𝑘 ⊂ 𝑆𝑆 indicates features of class 𝑘𝑘 from support set 𝑆𝑆𝑓𝑓𝜃𝜃



Domain Generalization

• Input: Images and labels from multiple source domains

• Output: A well-generalized model for unseen target domains
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DS = {Photo, Painting, Cartoon}
DT = {Sketch}



Strategy of Episodic Training

• Episodic training for domain generalization (ICCV’19)

• Generalize across domains via Meta-Learning 

Zhang et al. : Episodic training for domain generalization. In ICCV (2019) 12



• Motivation
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Domain Specific Models

Aggregated ModelEpisodic 
training

Episodic Training (cont’d)
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Photo

Cartoon

• Random sample two domains, e.g., Photo and Cartoon

Episodic Training (cont’d)
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Photo Cartoon

• Random sample two domains, e.g., Photo and Cartoon

Episodic Training (cont’d)
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Episodic Training (cont’d)



Experiments

• Input: Images and labels from multiple source domains

• Output: A well-generalized model for unseen target domains
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DS = {Photo, Painting, Cartoon}
DT = {Sketch}



• Domain Generalized Classification

Zhang et al.: Episodic training for domain generalization. In ICCV (2019) 18

Experiments (cont’d)
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Outline

• Introduction to Federated Learning
• Federated Learning on Non-IID Data Silos
• Beyond Supervised Federated Learning

• Semi-supervised
• Self-supervised

• Personalized Federated Learning
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Why Federated Learning?

• Data privacy issue becomes a growing concern in modern AI services

• Regulations like CCPA (California) or GDPR (Europe) restrict data 
transmission across different data sources

Centralized Learning
21



Federated Learning

• Collaborative learning without centralizing data

• Share model weights instead of raw data (or features)!
• Model training occurs locally at each participant/client

Federated Learning
22



Federated Learning (cont’d)

• Training models collaborately without sharing the raw data

• FedAvg:
• Local client training using private data

Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017 23



Federated Learning (cont’d)

• Training models collaborately without sharing the raw data

• FedAvg:
• Local client training using private data --> Server aggregation (i.e., averaging)

Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017 24



Federated Learning (cont’d)

• Training models collaborately without sharing the raw data

• FedAvg:
• Local client training using private data --> Server aggregation (Averaging)

--> Broadcast to clients (then iterate)

Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017 25



Outline

• Introduction to Federated Learning
• Federated Learning on Non-IID Data Silos
• Beyond Supervised Federated Learning

• Semi-supervised
• Self-supervised

• Personalized Federated Learning
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Non-IID Data
• In real-world FL applications, data distributions among different clients 

are usually Non-Independently and Identically Distributed (non-IID)

• For example:
• Class/label distribution skew

Reference: Utility Optimization of Federated Learning with Differential Privacy, DDNS 2021 27



Non-IID Data (cont’d)
• In real-world FL applications, data distributions among different clients 

are usually Non-Independently and Identically Distributed (non-IID)

• For example:
• Label distribution skew
• Domain shift
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Non-IID Data (cont’d)

• In real-world FL applications, data distributions among different clients 
are usually Non-Independently and Identically Distributed (non-IID)

• For example:
• Label distribution skew
• Domain shift

• Models trained on such data are hard to achieve global optima

Reference: Towards Personalized Federated Learning, TNNLS 2022 29



Tackling Non-IID Data (cont’d)

• Limiting the impacts of heterogeneous local updates
• FedProx: 

Add a proximal term to force the local model to be closed to the 
global model

• For local update in client k, find the optimal model weight w that satisfy:

Proximal term

Federated Optimization in Heterogeneous Networks, MLSyS 2020 30



Tackling Non-IID Data (cont’d)

• Limiting the impacts of heterogeneous local updates
• FedProx
• SCAFFOLD: Correcting local gradient to avoid client drift

SCAFFOLD: Stochastic Controlled Averaging for Federated Learning, ICML 2020

𝑤𝑤1∗

𝑤𝑤∗

Client 1 optimal

Global optimal

Client update

Correction

Local gradient
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Tackling Non-IID Data (cont’d)
• Limiting the impacts of heterogeneous local updates

• FedProx
• SCAFFOLD
• MOON: Enforce local features to be similar to global features

• (local model 𝑡𝑡, global model 𝑡𝑡) --> positive
• (local model 𝑡𝑡, local model 𝑡𝑡−1) --> negative 

Model-Contrastive Federated Learning, CVPR 2021 32



Outline

• Introduction to Federated Learning
• Federated Learning on Non-IID Data Silos
• Beyond Supervised Federated Learning

• Semi-supervised
• Self-supervised

• Personalized Federated Learning
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Federated Semi-Supervised Learning (FSSL)

• Some labeled clients, and other unlabeled clients

Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching, MICCAI 2021 34



FSSL Baseline Method

• Labeled clients: use standard cross-entropy loss
• Unlabeled clients: use consistency loss

Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching, MICCAI 2021

Unlabeled clients
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FedIRM

• Labeled clients use class-correlation matrix 
to guide the learning of unlabeled clients

Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching, MICCAI 2021 36



FedIRM (cont’d)

• Labeled clients use class-correlation matrix 
to guide the learning of unlabeled clients

Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching, MICCAI 2021

• Per-category mean feature

• Soft label distribution 

• Class confusion matrix

• Inter-client relation matching
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Federated Self-Supervised Learning

• Learn useful representation from distributed unlabeled data
• FedEMA

• Local training: apply BYOL for local training
• Update online network (student) with divergence-aware EMA

• If 𝑊𝑊𝑘𝑘 is similar to 𝑊𝑊𝑔𝑔, update 𝑊𝑊𝑘𝑘
• Otherwise, keep 𝑊𝑊𝑘𝑘 unchanged for retaining local knowledge

Divergence-aware Federated Self-Supervised Learning, ICLR 2022 38



Outline

• Introduction to Federated Learning
• Federated Learning on Non-IID Data Silos
• Beyond Supervised Federated Learning

• Semi-supervised
• Self-supervised

• Personalized Federated Learning
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Personalized FL (PFL)

• In real-world scenarios, a customized model for each client 
would be desirable

• E.g., advertising recommendation system customized for different users

• What to personalize in FL?
• Personalized aggregation strategy
• Personalized layers
• …

40



Personalized Aggregation Strategy

• BN layers (white) describe client-specific data distribution (μ, r)

• Shared layers (colored) are uploaded for weighted aggregation
• Clients with similar distribution would contribute more

Personalized Federated Learning with Adaptive Batchnorm for Healthcare, IEEE Trans. Big Data, 2022 41



Personalized Layers

• FedRep

• Each personalized model contains
• Shared global feature extractor 𝜑𝜑: 𝑅𝑅𝑑𝑑 → 𝑅𝑅𝑘𝑘

• Personalized classification head ℎ: 𝑅𝑅𝑘𝑘 → 𝑦𝑦

• Local update for client 𝑖𝑖:
1. Fix 𝜑𝜑𝑡𝑡, train ℎ𝑖𝑖𝑡𝑡 for 𝜏𝜏 epochs
2. Fix ℎ𝑖𝑖𝑡𝑡, train 𝜑𝜑𝑖𝑖𝑡𝑡 for 1 epoch

• Server aggregation:
• Collect 𝜑𝜑1𝑡𝑡 , … ,𝜑𝜑𝑛𝑛𝑡𝑡 from clients
• 𝜑𝜑𝑡𝑡+1 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝜑𝜑1𝑡𝑡 , … ,𝜑𝜑𝑛𝑛𝑡𝑡 )

Exploiting Shared Representations for Personalized Federated Learning, ICML 2021 42



What We’ve Covered This Semester…

• NN & CNN

• Object Detection & Semantic Segmentation
• Generative Model & GAN

• Diffusion Model

• Transfer Learning (Domain Adaptation & Generalization)
• RNN & Transformer

• Vision & Language

• Few-Shot Learning
• 3D Vision

• Federated Learning
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