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 Self-Supervised Learning (SSL)

Pretext Tasks vs. Contrastive Learning

e SSL Beyond Images
* |Invited Talk

10 Secrets You Need to Know About

Software Engineering & Career Planning

Would you expect an Olympic athlete to compete for Gold medal without any
preparation or practice? Of course not!

Career Planning is about choices, yet it is extremely difficult to make decisions about
your future when you have been doing the same thing as everyone else for the past
two decades. In this talk, we will discuss some of the fundamentals that are crucial to
grooming a customized career path that no employers would ever tell you. We will
discuss tactics and strategies to ace the interview for the software engineering space,
as well as the hiring trend to keep up-to-date demanded skills.

| specialize in executive search for c-level suites, and am the Practice Leader
for SCM and Engineering recruiting at Paul Wright Talwan. Holder of a
Bachelor’s degree in architecture from CMU, went onto studying for 2 more
master’s degrees at CMU and the University of Oxfard in England, focusing on
Urban Design and Corporate Social Responsibility. | have a genuine interest in

L] improving humanity in general, from the time | studied architecture to my
time now as a recruitment consultant/headhunter, it is “people” that's the

4 center of my focus and fuels my passion for my work and life.

Linda Huang
Practice Leader

Paul Wiight Taiwan Limited

10 Secrets You Need To Know
About Software Engineering & Career Planning

Tuesday December 6% f BL-112 / 10:10am - 12pm
{Host: Prof. Frank Wang)

Do you wish to become the CTO of a corperation? Do you want to make more money
than your colleagues? Are you looking for oppartunities to set up your own startup?
Or you just want to find a place to chill for the rest of your life? All your questions will
be answered to crush competitors and land your dream jobs. Let’s start building your
own roller-coaster ride.

| am the Associate Director in Paul Wright Taiwan, specializing in mid-senior,
executive-level search within the software engineering space. Having
delivered numerous complex search mandates with domestic software
start-ups to global organizations, | have an extensive network of candidates
with skills across cutting-edge digital, FinTech & Al, data science, and
mobile technology. Priorto a career in recruitment, | was working in
account management roles in a Fertune 500 American IT service.

Sharine Chen

Associate Director
Paul Wright Taiwan Limited
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Supervised Learning

* Deep learning plus supervised learning are rocking the world ...
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* Inreal world scenarios, data-annotation is quite time-consuming

* Could one exploit supervised signals from unlabeled data?




Self-Supervised Learning (SSL)

* Learning discriminative representations from unlabeled data

* Create self-supervised tasks via data augmentation
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Self-Supervised Learning (SSL)

 Self-Supervised Pretraining

e Supervised Fine-tuning

___________________

Knowledge Transfer

Supervised Downstream Task Training
Labeled Dataset
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Self-Supervised Learning (SSL)
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RotNet

* Learning to predict the rotation angle
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Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations.” ICLR 2018
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RotNet

* Filters learned with SSL exhibit more variety

(a) Supervised (b) Self-supervised to recognize rotations



Jigsaw Puzzle

* Assign the permutation index and perform augmentation

* Solve jigsaw puzzle by predicting the permutation index

v

o ]

-

E N

wn

./;
"’-%-—-— -/—‘—“B/ﬂ*‘/_‘m./_ Jaal
Permutation Set A fc7  fc8 softmaox

index permutation Reorder patches according to
the selected permutation

~I

(o]

L IR T

64 946832517

) ANERS! ©
Q
#:#3
L

.
cé

1x11x96  5x5x256 3x3x384 3x3x384 3x3x256

~0

Noroozi et al. “Unsupervised learning of visual representations by solving jigsaw puzzles.” ECCV 2016 10



Self-Supervise

* Contrastive Learning
« CPC (ICML"20)
 SimCLR (ICML’20)
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Contrastive Predictive Coding (CPC)

* Sample positive patches from itself and negative patches from other images

* Maximize positive similarities and minimize negative ones
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Henaff et al. “Data-efficient image recognition with contrastive predictive coding.” ICML 2020



SImCLR

e Attract augmented images and repel negative samples

* Improve the representation quality with projection heads (g)...why?
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Chen et al. "A simple framework for contrastive learning of visual representations." ICML 2020
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SImCLR

* Experiments on semi-supervised settings

Label fraction
Method Architecture 1% 10%

Top 5

Supervised baseline ResNet-50 484 804

Methods using other label-propagation:

Pseudo-label ResNet-50 51.6 82.4
VAT+Entropy Min. ResNet-50 47.0 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 39.2 774
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 57.2 83.8
CPC v2 ResNet-161(%) 77.9 91.2
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8 92.6
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Self-Supervised Learning (SSL)

w | Objective
i ConvNet Maximize prob.
> g(X.y=0) —» M —> nedelF) Fx) |

| Predict 0 degrees rotation (y-0)

elx.y=1) ConvNet Maximize prob.
” | model F(.) | i F(x') |

Rotate 0 degrees d
Rotated image: X*

Rotate 90 degrees Predict 90 degrees rotation (y=1) |

| |
ConvNet Maximize prob. |

model F(.) > F(x?)

redict 180 degrees rotation (y=2)
| Predict 180 deg ) |
|
|
- |
- . ConvNet » Maximize prob.

> g(x,y=3) —> ¥ model F() Flx) |

s rotation 1y731J

Rotated image: X" |

Lo g(X,y=

Image X Rotate 180 degrees .
Rotated image: X

Rotate 270 degrees | Predict 270 deg;

Rotated image: X*

* Learning w/o negative samples

« BYOL (NeurlPS$'20) h |
* Barlow Twins (ICML'21)

Representations
(for transfer tasks)

Distorted A .
images Embeddings
i Empirical Target
yA d Cross-corr. Cross-cofrr.
Images \ 'y T
L [
w  LsT
X K=" —s

/ feature

dimension

Encoder  Projector



Bootstrap Your Own Latent (BYOL)

* No need of negative pairs
* Introduce the predictor for asymmetry to avoid collapse

* Exponential Moving Average (EMA) 01 « 707 + (1 — 7)0s
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Grill et al. “Bootstrap your own latent: A new approach to self-supervised learning.” NeurlPS 2020



BYOL

BYOL

* No need of negative pairs

* Introduce the predictor for asymmetry to avoid collapse

e Exponential Moving Average (EMA)
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Barlow Twins

* Enforce diversity among feature dimensions

* Maximize diagonal terms and minimize off-diagonal ones

* No need of negative pairs, predictor network, gradient stopping

or moving average techniques
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Barlow Twins

* Experiments on classification

Method Top-1 Top-5
1% 10% 1% 10%
Supervised 254 564 484 804
PIRL - - 57.2 83.8
SIMCLR 483 65.6 755 878
BYOL 532 68.8 784 89.0
SWAV 539 70.2 785 89.9
BARLOW TWINS (ours) 55.0 69.7 79.2 89.3
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Barlow Twins

* Experiments on detection and segmentation

Method VOCO07+12 det COCO det COCO instance seg
AP, APsq AP;5 APPP APRY APRD ApPmk APZE APLI
Sup. 535 813 588 382 582 412 333 547 352

MoCo-v2 3574 825 640 393 589 4235 344 558 36.5
SwAV 56.1 82.6 6277 384 586 413 338 552 359
SimSiam 57 824 6377 392 593 42,1 344 56.0 36.7

BT (ours) 56.8 82.6 634 392 590 425 343 356.0 365
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SSL Beyond Image Data

e What about videos?

 What about noisy data? Jiet al., Learning to Learn from Noisy Labeled Data, CVPR 2019

Automobile
Automobile J Jruck

- _ Deer Classification Loss
Drlglnal Labels =] Horse - | L _(X,Y,0)
! E
memmmmneetmas | .
! Automobile M Tk : :r Predictions |
! . 1 1
Stuze?t B ! & Hose g _ VL (X,Y,,6) 1 !
Mode oY - =
— [E———— = — .
_ . :Synthetlc Labels =7 =S Consistency Loss |
1 11 !
P a 1
1 ] J 11 1
! Automobile i I
| Truck 11 !
: Automobile : : Meta Loss :
! st 60— aVL(X,Yy,0) i Lineta(0) |
:Synthetic Labels n } [ —— ?13 :
exponential 1 Yy 1 11 !
moving ! l:!‘ I : : i
average I S o H— J(X, 05,8 :
1
I i
1 1
4 = !
Teacher ! = '
=] 1
Maodel I > ! > B !
‘ ' | e— 21 i
1 1




What’s Next?

* |nvited Talk

10 Secrets You Need to Know About

Software Engineering & Career Planning

Would you expect an Olympic athlete to compete for Gold medal without any
preparation or practice? Of course not!

Career Planning is about choices, yet it is extremely difficult to make decisions about
your future when you have been doing the same thing as everyone else for the past
two decades. In this talk, we will discuss some of the fundamentals that are crucial to
grooming a customized career path that no employers would ever tell you. We will
discuss tactics and strategies to ace the interview for the software engineering space,
as well as the hiring trend to keep up-to-date demanded skills.

| specialize in executive search for c-level suites, and am the Practice Leader
for SCM and Engineering recruiting at Paul Wright Talwan. Holder of a
Bachelor’s degree in architecture from CMU, went onto studying for 2 more
master’s degrees at CMU and the University of Oxfard in England, focusing on
Urban Design and Corporate Social Responsibility. | have a genuine interest in
improving humanity in general, from the time | studied architecture to my
time now as a recruitment consultant/headhunter, it is “people” that's the

4 center of my focus and fuels my passion for my work and life.
Linda Huang
Practice Leader

Paul Wiight Taiwan Limited

10 Secrets You Need To Know
About Software Engineering & Career Planning

Tuesday December 6% f BL-112 / 10:10am - 12pm
{Host: Prof. Frank Wang)

Do you wish to become the CTO of a corperation? Do you want to make more money
than your colleagues? Are you looking for opportunities to set up your own startup?
Or you just want to find a place to chill for the rest of your life? All your questions will
be answered to crush competitors and land your dream jobs. Let’s start building your
own roller-coaster ride.

| am the Associate Director in Paul Wright Taiwan, specializing in mid-senior,
executive-level search within the software engineering space. Having
delivered numerous complex search mandates with domestic software
start-ups to global organizations, | have an extensive network of candidates
with skills across cutting-edge digital, FinTech & Al, data science, and
mobile technology. Priorto a career in recruitment, | was working in
account management roles in a Fertune 500 American IT service.

Sharine Chen

Associate Director
Paul Wright Taiwan Limited
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