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What to Cover Today?

 Introduction to 3D Vision
o Partl: 3D Perception

« Partll: 3D Reconstruction
« Neural Radiance Fields

o Extensions of NeRF

o Advanced Topics of NeRF



What is 3D Vision?

o Enable machine to perceive and reconstruct the 3D world
which we live in.




Applications of 3D Vision

e Robotics * Augmented Reality « Autonomous driving

References:
Boston Dynamics: https://www.youtube.com/watch?v=fn3KWM1kuAw

Ikea: https://www.youtube.com/watch?v=UudV1VdFtuQ
Waymo: https://www.youtube.com/watch?v=B8R148hFxPw



https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=UudV1VdFtuQ
https://www.youtube.com/watch?v=B8R148hFxPw

How to Represent the 3D World?

o Recap: 2D representations
o RGB pixels
o Images/videos
o Why 2D vision not good enough?

m Lack of depth, scene geometry, etc. information

o What about 3D representations?



How to Represent the 3D World? (cont’d)

o Multi-view RGB-D images




How to Represent the 3D World? (cont’d)

o« Voxels




How to Represent the 3D World? (cont’d)

« Polygon Mesh
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How to Represent the 3D World? (cont’d)

o Point Cloud




Deep Learning for 3D Vision

« Perception: extract information from 3D shapes (Part 1)

o Reconstruction: synthesis 3D shapes (Part 2)

gd
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What to Cover Today?

Part I: 3D Perception
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3D Perception

Extract information from 3D shapes for downstream tasks

O

Classification
Object/scene segmentation
Pose estimation

Object detection

airplane

Classification

Segmentation

3D bounding boxes

Detection
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3D Perception

e In this part, we will talk about feature extraction from:
o Multi-view images
o Voxel

o Point cloud

WA A

b

3D shape model
rendered with 20 rendere 0
different virtual cameras images
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forward /inference
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_ backward/learning
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Limitation of CNN

e Can we directly apply CNN on 3D data?

o Well, it depends...

3D Representation CNN applicable?
Multi-view images
Voxel
Mesh
Point Cloud
A
o= = )
- *’ -
\ T =
e * [
A f
b

rendered with 2D rendlere
different virtual cameras images




Multi-View Images

e Represent a 3D object with images captured from multiple views

e MVCNN for object recognition
o Extract image features with shared CNN

o Aggregate features from all views with view pooling

-
bathtub

chair
desk
dresser

UU“UU

toilet—

3D shape model
rendered with 2D rendered our multi-view CNN architecture output class

different virtual cameras images predictions

Multi-view convolutional neural networks for 3d shape recognition, ICCV 2015
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MVCNN (cont’d)

e Pros

o Can leverage SOTA or pre-trained CNNs for excellent performance
e Cons

o Setting not necessarily practical

o Sensitive to (1) viewpoint selection, (2) invisible viewpoint, (3) geometry

o Vulnerable to occlusion or

o No information on

P 4’ bathtubp
bed B
)i chair———
M 0 desk[—
. ) dresser[D
.‘ i
: toilet=
e
3D shape maodel
rendered with 2D rendered our multi-view CNN architecture output class

different virtual cameras images predictions

Multi-view convolutional neural networks for 3d shape recognition, ICCV 2015



Voxels

e Grids in fixed resolution x Xy X z

e Each grid contains 0/1: occupancy

17



3D Convolution for Voxels

e Convolution for 2D images y(i’j):;Xn}“(m’n)'h(i—md—n)

e Convolution for 3D voxels  v(i,5,k) =>_> ") z(m,n,p) - h(i — m,j — n,k —p)
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3D ShapeNets

3D object classification with voxels via 3D CNNs

A000
Accuracy only ~77%, not comparable to MVCNN — F '
3 C——
o Any explanation? object label 10 I 1200
Remarks 512 filters of @ °
stride 1 2 i |s
o Pros: -
160 filters of Fa
stride 2 FEAh
m Represent shape geometry s 71 13
m Easyto operate with 3D CNN ) A
48 filters of
stride 2 FAR
o Cons:
m Memory consuming...why?

3D voxel input

3D ShapeNets: A Deep Representation for Volumetric Shapes, CVPR 2015
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Point Cloud

e Point cloud is a point set, representing 3D shapes
e Each pointis represented by coordinates (x, vy, z)

e Point cloud is stored as a N X 3 matrix
(N: point number, 3: coordinates)

(x1,¥1,21)
(x2,Y2,22)

(XN, Yn> Zn)
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Point Cloud (cont’d)

Range = Time * LightSpeed / 2

e Point cloud can be obtained from LiDAR sensors

o Can capture scene geometry

2820 iPad Pro
B LiDAR Scanner

( @ A12Z Bionic Chip-.+- )

Augmented Reality (AR)

Reference: Robot Perception, taught by Prof. Shenlong Wang, UIUC

https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3 sensors.pdf 21



https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3_sensors.pdf

Challenges in Point Cloud

Can we directly apply CNN on point cloud?

o No, because point cloud is not grid-structured.

The shape object can be represented in different orders

Shape transformation not described (e.g., translation, rotation...

22



PointNet

Goal: Point cloud classification & segmentation

l I PointNet
;] mug? @ i}
-.?,y table? ‘
car? 5D
Classification Part Seg“mentation Semantic Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
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PointNet

e Goal: Point cloud classification & segmentation
e Classification

Classification Network
wmputm]p(6464)fea““emlp(641281024)maxm]p
£ transform :ﬁ: transform > ||:: pool 1024 (512,256.)
29 =2 ada | 3 R b | omeo )

H i — [ globa feature "

Multi-Layer Channel-wise max-pooling
Perceptron

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017 24



PointNet

e Goal: Point cloud classification & segmentation
e Classification

e Segmentation

Classification Network

input In]p(6464)feaunem]p(641281024)maxmlp
i transform :ﬁ: A ) pool 1opq  (512.256K)
: o =
é. 2 ] R P % heq | nx1024 F
: 0 eature
£ i — — B k
; , e output scores
""""""""" ,*'_*M-pomtfeaturesg
T g 2
n|x 1088 haed | S | shaed | E |3
| - | g
—— = 3
3

mlp (512,256,128) mlp (128.m)

Si -gmen.fa!fon Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017 25



PointNet

e Goal: Point cloud classification & segmentation
e Classification & segmentation

e Qualitative results
Point: (xyz, rgb)

skateboard

Input

earphone ':

Output

Part segmentation Scene segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017 26



PointNet

Goal: Point cloud classification & segmentation
Classification & segmentation
Qualitative results
Remarks
o Pros: extract features from unordered points
o Cons:
m Outlier/noisy point cloud data
m Cannot capture...

m  Might not robust to transformation like

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
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Extensions of PointNet

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space, NIPS 2017

Dynamic Graph CNN for Learning on Point Clouds, TOG 2019
KPconv: Flexible and deformable convolution for point clouds, ICCV 2019

Convolution in the cloud: Learning deformable kernels in 3D graph
convolution networks for point cloud analysis, CVPR 2020 (VLLab @ NTU)

Variational Transformer for Dense Point Cloud Semantic Completion, NeurlPS
2022 (VLLab @ NTU)

.\\.

d
Point clouds
o ! s e ’ o
o = h
d » ¢ g »

Local patch 2D Kernel Local region 3D-GCN Kernel
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What to Cover Today?

Part Il: 3D Reconstruction

29



3D Reconstruction

Reconstruct 3D shapes/scenes from partial observations

o Single/multi-view images I _
I I
o Videos ! ! 9 ‘
' [
o Incomplete point cloud e mwl -

In this part, we will talk about how to reconstruct

o—DPepth

o Voxels

o Point cloud

o—Mesh

o Function % ,g,,;w'“f % \ —

30



3D R2N2 for Voxel Reconstruction

3D Recurrent Reconstruction Neural Network (3D-R2N2)
o Input: one or multiple images of an object

o Output: voxel representation

3d-r2n2: A unified approach for single and multi-view 3d object reconstruction, ECCV 2016
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3D R2N2 for Voxel Reconstruction

3D Recurrent Reconstruction Neural Network (3D-R2N2)
o Input: one or multiple images of an object
o Output: voxel representation

o A recurrent 3D CNN with voxel-wise BCE loss

L(X y Z Y(i,g,k) ]-Og P(i,j, k)) + — Y(i,i,k) lOg(l — P(i,j, k]

'1
W<

hﬂ%

3D Convolutional LSTM T views

3d-r2n2: A unified approach for single and multi-view 3d object reconstruction, ECCV 2016 32



3D R2N2 for Voxel Reconstruction

e 3D Recurrent Reconstruction Neural Network (3D-R2N2)
o Input: one or multiple images of an object
o Output: voxel representation
o Arecurrent 3D CNN with voxel-wise BCE loss

o Examples (left: single image input, right: multiple image inputs)

P T £ N
Aememes s WHE e a
@ H‘ @ 'H 'H B o w
PHRPFP PEbeee
SERT S W

33

3d-r2n2: A unified approach for single and multi-view 3d object reconstruction, ECCV 2016



Point Set Generation

3D reconstruction via point cloud
Input: single or multiple images

Output: object point cloud

A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017
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Point Set Generation

3D reconstruction via point cloud
Input: single or multiple images
Output: object point cloud (unordered)

Two-branch prediction: fully connected for intrinsic structure +
deconvolution for smooth surfaces

conv deconv fully connected set union concatenation
mput & - - — —» — — —s
— IR - Y \ Y Y ' 1
M DN s s i s O et At e
1 Y Y Y

il I |

e —] e —— -

A Point Set Generation Net for 3D

hourglass version

Object Reconstruction from a Single Image, CVPR 2017

Encoder

Predictor
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Point Set Generation

3D reconstruction via point cloud
Input: single or multiple images
Output: object point cloud (unordered)
Two-branch prediction

Loss function: Chamfer distance

dep(S1,82) = Y min ||z — ylz+ ) min ||z — vll3
.’J:ES1y 2 YyESs !

A A

[ ) ([ 203
® o

v
v

4—-»’. [

A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017 36



Point Set Generation

3D reconstruction via point cloud
Input: single or multiple images
Output: object point cloud (unordered)
Two-branch prediction & loss function

input ours (post- ground

Example results e ous O ) Coan DRI

- C wE s
\ . ”—- ‘ iR

Figure 12. Visualization of points predicted by the deconvolution

branch (blue) versus the fully connected branch (red). p ; o 2 2
(blue) y (red) . 4 ?\ —_ 'h . H
5 b ﬁ ‘ —

A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017 37



Implicit Representation

e Represent shapes as “function”

e Tell us whether a point is on the surface

A

x2+y21/

2D circle

\ 4

e these points on the circle?

38



Implicit Representation

e Represent shapes as “function”
e Unitsphere: f(x,y,z) =x*+y?+2z? -1

o Surface is the zero level set of f(.)

Point cloud Mesh

0

x2+yi+z2=1

Implicit function

39



Occupancy Network

Shape is a function that determines a point is inside/outside of it

e s s e d
U, . o7 3
» "

v

(a) Voxel (b) Point (c) Mesh (d) Ours

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019
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Occupancy Network

e Make model learn to predict occupancy at every possible 3D point p € R3
e Think of occupancy function as a “classifier”

e Condition on object feature X

fo :R® x X —[0,1]

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019 41



Input  3D-R2N2  PSGN  Pix2Mesh AtlasNet Ours

Occupancy Network

Strength
e Flexible shape topology
e Arbitrary resolution
e Few model parameters

Weakness

e Noinfoon..
e Require post-processing to get mesh
e Cannot handle complex scene

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019 42



What to Cover Today?

Neural Radiance Fields

o Extension of NeRF

o Advanced Topics of NeRF

43



Recap:
Neural Networks as a Continuous Shape Representation

* Decision

Occupancy Networks Deep SDF i : = of gk
(Mescheder et al. 2019) (Park et al. 2019) ot
(x,y,z) -> occupancy (x,y,z) -> distance ——

@ SDF <0

Pros: Compact and expressive parameterization

Cons: Limited rendering, difficult to optimize

Slide credit: Jon Barron, cs598dwh
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NeRF:

Representing Scenes as
Neural Radiance Fields for
View Synthesis

Many slides from Jon Barron and cs598dwh (UIUC)

Ben Mildenhall* Pratul Srinivasan® Matt Tancik* Jon Barron

UC Berkeley UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley
@ @ 75> : 5>
il Google fil Google @%ﬁ% Google  UCSan Diego @%ﬁ%

Slide credit: cs598dwh

NeRF: Representing Scenes as Neural Radiance Fields for 45
View Synthesis, ECCV 2020




Problem: Novel view synthesis (NVS)

Inputs: sparsely sampled images of scene Outputs: new views of same scene
tancik.com/nerf

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 46

View Synthesis, ECCV 2020



NeRF (Neural randiance field)

* Goal: learn 3D representation, and perform novel view synthesis
* Input: multi-view images + camera poses

e Output: 3D representation (neural radiance field)

Input Images Optimize NeRF Render new views
TAC AL & ard
AR TT S
FAWadige 2 n -8
rrHNaAaNAIE S i i
Y AESE SN R A gl
%ﬁﬁﬂéfﬁﬁi?-_}= a Hﬂﬁ*“

FLedFegETET S -
AMAEG &P E . 1 g —ﬁg‘? 2 By
s B R e A =) W og o

SR N T

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020
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NeRF (Neural randiance field)

(ZE, y7 Z? 97 ¢) *III*(T7 g7 b? O-)
—— ——
F

Spatial Viewing Output Output

location direction color density
Fully-connected neural network
9 layers,
256 channels

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis, ECCV 2020
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Generate views with traditional volume rendering

-/

5\
/=

Slide credit: Jon Barron
49

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
C =~ Z T;oc;

=1 \

colors

Ray

weights

e How much light is blocked earlier along ray: 4
volume

1—1

T,,; = H(l — Odj)

j=1

Camera
e How much light is contributed by ray segment I

Density * Distance Between

—0;0t Points

a; =1—e€
Slide credit: Jon Barron
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Optimize with gradient descent on rendering loss

j der; (Fy) — L]||*
meanL:Hren er; (Fp) |

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for

View Synthesis, ECCV 2020
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Training network to reproduce all input views of the scene

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss

rv-,9¢ _*["]]_. RGBo) \
ay'1
G Ray 2 %0,@’31

A

Ray 1

ASLES !
= Ray 2 /_\ 2
A ‘

. Ray Distance

(b) (c) (d)

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 52

View Synthesis, ECCV 2020



Can we allocate samples more efficiently?
--Two pass rendering

Ray

3D volume

‘ Camera
Slide credit: Jon Barron

NeRF: Representing Scenes as Neural Radiance Fields for 53
View Synthesis, ECCV 2020



Two pass rendering:coarse network

* Sparsely sample points along ray

* Serve as a coarse guidance Ray

3D volume

treat weights as probability
distribution for new samples

‘Camera

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Two pass rendering:fine network

e Use the coarse predicted density to
resample new points along ray Ray

e Together compute all N_ + N; points to
calculate final color for fine network

3D volume

N, =128

treat weights as probability
distribution for new samples

‘Camera

2

. 2 .
C.(r) = Co)| + Hcf(r) — O(r)

2} (coarse + fine)

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 55

View Synthesis, ECCV 2020



Two pass rendering: optimization

Ray

e Optimize coarse network and fine network
together

e Only use the prediction of fine network
when rendering a new scene

‘Camera

£=3" h Cole) - ) + ¢ ) - C"'(“)Hz]

(coarse + fine)

reR
predicted color predicted color
from coarse from fine
network network

. . : Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 56

View Synthesis, ECCV 2020



Positional encoding

NeRF (Naive) NeRF (with positional encoding)

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 57

View Synthesis, ECCV 2020



Positional encoding

input signal
(position,

N3 direction)
aive [ *III >

sin(v), cos(v)
sin(2v), cos(2v)
sin(4v), cos(4v) *III* y
sin(2¥7!v), cos(2X v

Positional encodlng

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 58

View Synthesis, ECCV 2020



Network Structure

independent from input

direction
Input
position /
s Predicted
o Density
N e
Input
position
7(x)
60 —> —> —> —> —> —> —> 7 g “-).
(L =10 for
positional
posional (+d ) Predicted
Y
lor
(L =4 for = ooP
positional Input
encoding) | direction

. : ) Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 59

View Synthesis, ECCV 2020



Viewing directions as input

e The specular reflection (or other changes influenced by lighting)
varies across different views

. . , Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 60

View Synthesis, ECCV 2020



Viewing directions as input

® The rendered color changes as the viewing direction
® |:image plane change with viewing direction
® R: fixing image plane while the viewing direction feeded to NeRF changes

NeRF: Representing Scenes as Neural Radiance Fields for 61
View Synthesis, ECCV 2020



Viewing directions as input

e Another example

NeRF: Representing Scenes as Neural Radiance Fields for 62
View Synthesis, ECCV 2020



Depth (geometry) Estimation

e The predicted density indicates the object surface
e The estimated depth perfectly shows
the geometry of foreground object

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020
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Depth (geometry) Estimation

e Another example

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020
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Depth (geometry) Estimation

e By correctly estimate the depth of the scene, virtual objects are
possible to interact with the real scene

e ] _ AT
M: . | I _:'"

NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis, ECCV 2020
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NeRF: strength & weakness

Strength

* Photo-realistic texture
* Do not require 3D ground truth
» View-dependent effect

Weakness
« Only fit single scene
* Require much posed images

» Time-consuming rendering (30s per frame) <- Fatal for real-time applications !!
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What to Cover Today?

Neural Radiance Fields

o Extension of NeRF: Can We Do Faster??

o
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Baking Neural Radiance Fields
for Real-Time View Synthesis

Peter Hedman Pratul P. Srinivasan Ben Mildenhall Jonathan T. Barron

Google Research

- °

Paper Video Demos

http://nerf.live/

Baking Neural Radiance Fields for Real-Time View
Synthesis, ICCV 2021

Paul Debevec

68


http://nerf.live/

Basic idea

® |n original NeRF, most information are independent from input direction
¢ Those information can be pre-computed and stored before rendering

Independent from input direction

v(x)
60
+ o
v(x)
5 — 256 —» 256 —» 256 —» 256 —» 256 —» 256 —>» 256 —» 256 256 =—>» 128 ---» RGB

69



Method: overview

e NeRF modified to output diffu

se color, density, and 4-d specular features

e Color and features are accumulated along ray,

and a small network produces

Training time:
Exhaustive sampling
through large neural

network
Diffuse colors ¢,
Camera ray Volume densities &
o+rd

Specular features v,

Alpl

’

Test time:
Accelerated ray
marching through
sparse 3D voxel grid

Baking Neural Radiance Fields for Real-Time View

Synthesis, ICCV 2021

Alpha-composite

/

features along ray

a specular residual that is added to color

Combine to get
final output

colors along ray

Pass through tiny
neural network

J s

Ray viewing
direction d

ha-composite

— A
Specular SEE

color #

Slide credit: cs598dwh
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Standard NeRF Rendering Accelerated SNeRG Rendering

Method: rendering

B b

Al

P
!

Precompute diffused
colors/features on voxel grid

Voxels are stored sparsely and
divided into local blocks

In coarse grids, see if occupied;
if so pointer to higher resolution
color/feature info

Compute specular component
from features and add to color

Colors,
Result: alphas !' "
30+ FPS on laptop, <
model < 100 MB @
Final color Colors, features, é color
alphas

Slide credit: cs598dwh

Baking Neural Radiance Fields for Real-Time View 71 71
Synthesis, ICCV 2021



NeurMiPs: Neural Mixture of
Planar Experts for View Synthesis

Zhi-Hao Lin  Wei-Chiu Ma Hao-Yu Hsu Yu-Chiang Frank Shenlong Wang

Wang
il National
UNIVERSITY OF TOI_\NOn'
ILLINOIS M iy
https://zhihao-lin.github.io/neurmips/ Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View
Synthesis (CVPR 2022)


https://zhihao-lin.github.io/neurmips/

Method:overview

® Represent scene with mixture of local planar surfaces. (non-parallel)

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 73
Synthesis (CVPR 2022)



Method:overview

® Represent scene with mixture of local planar surfaces. (non-parallel)

Mixture of planar experts

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 74
Synthesis (CVPR 2022)



Method:overview

® Represent scene with mixture of local planar surfaces. (non-parallel)

fK (Xa d)
-

Mixture of planar experts

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 75
Synthesis (CVPR 2022)



Method: overview

® Represent scene surface: avoid sampling in free space -> speed up

® Flexible plane geometry: allow NVS from wide-range view points

fK (Xa d)
-

Mixture of planar experts

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 76
Synthesis (CVPR 2022)



Input Ray and
Mixture of Planes

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View ”
Synthesis (CVPR 2022)



Input Ray and
Mixture of Planes

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 78
Synthesis (CVPR 2022)



Input Ray and Hit Planes and
Mixture of Planes Intersecting Points

Q

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 79
Synthesis (CVPR 2022)



Input Ray and Hit Planes and Transparency Color
Mixture of Planes Intersecting Points Ci

V. - Q

= FE

1. Ray Casting 2. Planar Neural
Radiance
Slide credit: Zhi-Hao Lin
NeurMiPs: Neural Mixture of Planar Experts for View 80

Synthesis (CVPR 2022)



Input Ray and Hit Planes and Transparency Color Ray Color
Mixture of Planes Intersecting Points F(xr.d) Qg Ci

‘ | A | u . o(r)
'” M- 128 555 o
-1 B

1. Ray Casting 2. Planar Neural 3. Alpha—Blending
Radiance
Slide credit: Zhi-Hao Lin
NeurMiPs: Neural Mixture of Planar Experts for View 81

Synthesis (CVPR 2022)



Method: model

color : ¢,

alpha : ay,

* Position p,, € R3 Neural radiance field network
e orientation n,, u; € R  * Input: position, direction
* Size (wy, hy) * Output: color, transparency

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 82
Synthesis (CVPR 2022)



Method: initialization

® extract 3D point cloud from multiview images with COLMAP
® |nitialize plane position, orientation on points

COLMAP

Multiview images 3D point cloud

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 83
Synthesis (CVPR2022)



Method: training

For training views, compute and optimize

® Geometry loss:

Ly=)

mind(x;,8,) + A

Z (wy hy)?

Rectangle area

— k

i k

Point-rectangle
® Color loss: distance

1 2

® Total Lo=5D lle(r) = ()3

r

Etotal — Eg + ﬁc
NeX | NeRF | PlenOctree* | KiloNeRF* | Ours

# Params (M) | 21.28 1.19 1457.2 6.21 3.11
FPS 0.142 | 0.106 78.04 4.19 19.16

Table 7. Model size and inference speed on Replica.

Synthesis (CVPR 2022)

NeurMiPs: Neural Mixture of Planar Experts for View

Slide credit: Zhi-Hao Lin
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Result

Slide credit: Zhi-Hao Lin

NeurMiPs: Neural Mixture of Planar Experts for View 85
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More references about NeRF improvements

® Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains (NeurlPS 2020) -> explain why positional encoding works

® PlenOctrees for Real-time Rendering of Neural Radiance Fields (ICCV 2021)

® Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
(ICCV 2021)

® KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs
(ICCV 2021)

® Plenoxels : Radiance Fields without Neural Networks (CVPR 2022)
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What to Cover Today?

Neural Radiance Fields

O

o Advanced Topics of NeRF
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pixeINeRF: Neural Radiance Fields from One
or Few Images

CVPR 2021

Alex¥u  VickieYe  Matthew Tancik  Angjoo Kanazawa

UC Berkeley

https://alexyu.net/pixelnerf/

pixeINeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)
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Method

® |mage feature as condition of NeRF

® The NeRF itself learns a object prior
(e.g., what a general car/chair should look like)

e Able to fit different object/scene with only one NeRF model

® Only need one image (for encoding image feature) of the scene during testing
on a new scene

Input View

\ f Volume Rendering
W G

Ray Distance

R | |l !
‘ N ¥ " W(nz) / 2
WE e 2

CNN Encoder Target View Rendering Loss

pixeINeRF: Neural Radiance Fields from One or Few Images (CVPR 2021) 89



Results--single category




Results--multi-category

Input

SoftRas DVR SRN Ours

pixeINeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)

GT
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DREAMFUSION:

TEXT TO-3D USING 2D DIFFUSION

H Iam Jonathan T. Barron Ben Mildenhall
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Arxiv
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https://dreamfusion3d.qithub.io/

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION


https://dreamfusion3d.github.io/

Goal

&
&

a lue jay standing on a large basket of rainbow macarons*

j

an orangutan making a clay bowl on a throwing wheel* a raccoon astronaut holding his helmet

e Take description as input and generate corresponding 3D results
(via 2D rendering)

e Without paired “text and 3D object”

e Combining NeRF and 2D text-to-image diffusion model
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Recap: Diffusion model (intuitively)

U-Net model
Po Xt 1|Xt
o I ‘5»

Pre-defined process
(adding noise)

e Can be viewed as denoising from a Gaussian noise image

e Each step makes little progress of denoising (total about 1000 steps)

e Output image of each step can be seen as the original image combining with
a noise using specific ratio

e The process can also be seen as predicting the added noise
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Method

vector from light source

"a DSLR photo of a
peacock on a surfboard" Imagen

zi,t ~U(0,1) Zo(2e|y:t)

rendering

+

P(camera)

random chosen
Backpropagate onto NeRF weights

€s(2Zt|y; t) —

e The left part is a standard NeRF with shading condition

e Combine the rendered NeRF image with random noise to simulate a state of
the text-to-image diffusion model

e The difference between the predicted noise and the inserted noise is treated
as the rendering loss to guide NeRF

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION
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a corgi taking a selfie®

I ¥

Michelangelo style statue of dog reading news on a cellphone a tiger dressed as a doctor® a steam engine train, high resolution*

a frog wearing a sweater™ a humanoid robot playing the cello*®

Sydney opera house, aerial view
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a sliced loaf of fresh bread

zoomed out view of Tower Bridge made out of gingerbread and éandy a robot and dinosaur playing ches% high resolution*® a squirrel gesturing in front of an easel showing co]orfui pie charts
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Result

N wearing ' riding a on a road
. BN a leather i -~ motorcycle made of ice
Jacket h o
a squirrel Sy
K D’" % Df‘%:"é %
I‘bcbf'{?. %fb-&'? Df?ﬁﬁﬁ
“ %, %, Y,
-

-
. =
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More references about further topics of NeRF

e Editing Conditional Radiance Fields (EditNeRF)(ICCV 2021)

® pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image
Synthesis (CVPR 2021)

e FENeRF: Face Editing in Neural Radiance Fields (CVPR 2022)

e StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Synthesis (ICLR 2022)
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What We’ve Covered Today?

« Introduction to 3D Vision
o Partl: 3D Perception

o Partll: 3D Reconstruction
« Neural Radiance Fields

o Extension of NeRF

o Advanced Topics of NeRF
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