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What to Cover Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extensions of NeRF

○ Advanced Topics of NeRF
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What is 3D Vision?

● Enable machine to perceive and reconstruct the 3D world 
which we live in.
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Applications of 3D Vision

4

● Robotics • Autonomous driving • Augmented Reality

References:
Boston Dynamics: https://www.youtube.com/watch?v=fn3KWM1kuAw
Ikea: https://www.youtube.com/watch?v=UudV1VdFtuQ
Waymo: https://www.youtube.com/watch?v=B8R148hFxPw

https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=UudV1VdFtuQ
https://www.youtube.com/watch?v=B8R148hFxPw


How to Represent the 3D World?

● Recap: 2D representations 
○ RGB pixels

○ Images/videos

○ Why 2D vision not good enough?

■ Lack of depth, scene geometry, etc. information

● What about 3D representations?
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images
● Voxels
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images
● Voxels
● Polygon Mesh
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How to Represent the 3D World? (cont’d)

● Multi-view RGB-D images
● Voxels
● Polygon Mesh
● Point Cloud
● …
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Deep Learning for 3D Vision

● Perception: extract information from 3D shapes (Part 1)

● Reconstruction: synthesis 3D shapes (Part 2)
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What to Cover Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extension of NeRF

○ Advanced Topics of NeRF
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3D Perception

● Extract information from 3D shapes for downstream tasks

○ Classification

○ Object/scene segmentation

○ Pose estimation

○ Object detection
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3D Perception

● In this part, we will talk about feature extraction from:

○ Multi-view images

○ Voxel

○ Point cloud

13



Limitation of CNN

● Can we directly apply CNN on 3D data?

○ Well, it depends…

14

3D Representation CNN applicable?
Multi-view images 

Voxel 

Mesh 

Point Cloud



Multi-View Images

● Represent a 3D object with images captured from multiple views
● MVCNN for object recognition

○ Extract image features with shared CNN

○ Aggregate features from all views with view pooling 

15Multi-view convolutional neural networks for 3d shape recognition, ICCV 2015



MVCNN (cont’d)

● Pros

○ Can leverage SOTA or pre-trained CNNs for excellent performance 

● Cons
○ Setting not necessarily practical

○ Sensitive to (1) viewpoint selection, (2) invisible viewpoint, (3) geometry

○ Vulnerable to occlusion or 

○ No information on

16Multi-view convolutional neural networks for 3d shape recognition, ICCV 2015



Voxels

● Grids in fixed resolution 𝑥𝑥 × 𝑦𝑦 × 𝑧𝑧
● Each grid contains 0/1: occupancy
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3D Convolution for Voxels

● Convolution for 2D images
● Convolution for 3D voxels
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2D CNN 3D CNN



3D ShapeNets

● 3D object classification with voxels via 3D CNNs
● Accuracy only ~77%, not comparable to MVCNN

○ Any explanation?

● Remarks

○ Pros:

■ Represent shape geometry

■ Easy to operate with 3D CNN

○ Cons:

■ Memory consuming...why?

193D ShapeNets: A Deep Representation for Volumetric Shapes, CVPR 2015



Point Cloud

● Point cloud is a point set, representing 3D shapes
● Each point is represented by coordinates (x, y, z)
● Point cloud is stored as a 𝑁𝑁 × 3 matrix   

(N: point number, 3: coordinates)

20

(𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1)
(𝑥𝑥2, 𝑦𝑦2, 𝑧𝑧2)

(𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁, 𝑧𝑧𝑁𝑁)

𝑁𝑁
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Point Cloud (cont’d)

● Point cloud can be obtained from LiDAR sensors
● Can capture scene geometry

21

Autonomous driving

Augmented Reality (AR)

Reference: Robot Perception, taught by Prof. Shenlong Wang, UIUC
https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3_sensors.pdf

https://shenlong.web.illinois.edu/teaching/cs598fall21/assets/slides/lecture3_sensors.pdf


Challenges in Point Cloud

● Can we directly apply CNN on point cloud? 
○ No, because point cloud is not grid-structured.

● The shape object can be represented in different orders
● Shape transformation not described (e.g., translation, rotation…)
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PointNet

● Goal: Point cloud classification & segmentation

23PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017



PointNet

● Goal: Point cloud classification & segmentation
● Classification

24PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

(x,y,
z)

MLP (NN)

1024-dim feature
3 4 7 4
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Multi-Layer 
Perceptron

Channel-wise max-pooling



PointNet

● Goal: Point cloud classification & segmentation
● Classification
● Segmentation

25PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

(x,y,
z)

MLP (NN)

1024-dim feature
3 4 7 4
0 2 9 6
5 2 1 8

5 4 9 8Max-pool
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PointNet

● Goal: Point cloud classification & segmentation
● Classification & segmentation
● Qualitative results

26PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017

Part segmentation Scene segmentation

Point: (xyz, rgb)



PointNet

● Goal: Point cloud classification & segmentation
● Classification & segmentation
● Qualitative results
● Remarks

○ Pros: extract features from unordered points

○ Cons:

■ Outlier/noisy point cloud data

■ Cannot capture…

■ Might not robust to transformation like

27PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017



Extensions of PointNet

● PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric 
Space, NIPS 2017

● Dynamic Graph CNN for Learning on Point Clouds, TOG 2019
● KPconv: Flexible and deformable convolution for point clouds, ICCV 2019
● Convolution in the cloud: Learning deformable kernels in 3D graph 

convolution networks for point cloud analysis, CVPR 2020 (VLLab @ NTU)
● Variational Transformer for Dense Point Cloud Semantic Completion, NeurIPS

2022 (VLLab @ NTU)
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What to Cover Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extension of NeRF

○ Advanced Topics of NeRF
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3D Reconstruction

● Reconstruct 3D shapes/scenes from partial observations

○ Single/multi-view images

○ Videos

○ Incomplete point cloud

● In this part, we will talk about how to reconstruct

○ Depth

○ Voxels

○ Point cloud

○ Mesh

○ Function
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3D R2N2 for Voxel Reconstruction

● 3D Recurrent Reconstruction Neural Network (3D-R2N2)

○ Input: one or multiple images of an object

○ Output: voxel representation

31
3d-r2n2: A unified approach for single and multi-view 3d object reconstruction, ECCV 2016



3D R2N2 for Voxel Reconstruction

● 3D Recurrent Reconstruction Neural Network (3D-R2N2)

○ Input: one or multiple images of an object

○ Output: voxel representation

○ A recurrent 3D CNN with voxel-wise BCE loss

323d-r2n2: A unified approach for single and multi-view 3d object reconstruction, ECCV 2016



3D R2N2 for Voxel Reconstruction

● 3D Recurrent Reconstruction Neural Network (3D-R2N2)

○ Input: one or multiple images of an object

○ Output: voxel representation

○ A recurrent 3D CNN with voxel-wise BCE loss

○ Examples (left: single image input, right: multiple image inputs)

333d-r2n2: A unified approach for single and multi-view 3d object reconstruction, ECCV 2016



Point Set Generation

● 3D reconstruction via point cloud
● Input: single or multiple images
● Output: object point cloud

34A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017



Point Set Generation

● 3D reconstruction via point cloud
● Input: single or multiple images
● Output: object point cloud (unordered)
● Two-branch prediction: fully connected for intrinsic structure +

deconvolution for smooth surfaces

35A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017



Point Set Generation

● 3D reconstruction via point cloud
● Input: single or multiple images
● Output: object point cloud (unordered)
● Two-branch prediction
● Loss function: Chamfer distance

36A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017



Point Set Generation

● 3D reconstruction via point cloud
● Input: single or multiple images
● Output: object point cloud (unordered)
● Two-branch prediction & loss function
● Example results

37A Point Set Generation Net for 3D Object Reconstruction from a Single Image, CVPR 2017



Implicit Representation

● Represent shapes as “function”
● Tell us whether a point is on the surface

38

2D circle

𝑥𝑥2 + 𝑦𝑦2 = 1
Q: Are these points on the circle?
(0, 1)
(1, 0)
(1, 1)
(0, 0)



Implicit Representation

● Represent shapes as “function”
● Unit sphere: 𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 1 = 0

○ Surface is the zero level set of 𝑓𝑓(. )

39

Point cloud Mesh Implicit function

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1



Occupancy Network

● Shape is a function that determines a point is inside/outside of it

40
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019



Occupancy Network

● Make model learn to predict occupancy at every possible 3D point 𝑝𝑝 ∈ 𝑅𝑅3

● Think of occupancy function as a “classifier”
● Condition on object feature X

41
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019



Occupancy Network

42Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019

Strength
● Flexible shape topology
● Arbitrary resolution 
● Few model parameters 

Weakness
● No info on…
● Require post-processing to get mesh
● Cannot handle complex scene



What to Cover Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extension of NeRF

○ Advanced Topics of NeRF
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Recap: 
Neural Networks as a Continuous Shape Representation

Slide credit: Jon Barron, cs598dwh

Occupancy Networks
(Mescheder et al. 2019)
(x,y,z) -> occupancy

Deep SDF
(Park et al. 2019)
(x,y,z) -> distance

Pros: Compact and expressive parameterization

Cons: Limited rendering, difficult to optimize
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NeRF:
Representing Scenes as 
Neural Radiance Fields for 
View Synthesis

Many slides from Jon Barron and cs598dwh (UIUC)

Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC BerkeleyUC Berkeley

Ben Mildenhall* Pratul Srinivasan* Matt Tancik* Jon Barron

Slide credit: cs598dwh
NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020
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Inputs: sparsely sampled images of scene Outputs: new views of same scene
tancik.com/nerf

Slide credit: Jon Barron
NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020
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Problem: Novel view synthesis (NVS)



• Goal: learn 3D representation, and perform novel view synthesis
• Input: multi-view images + camera poses
• Output: 3D representation (neural radiance field)

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020
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NeRF (Neural randiance field)



{ {
Spatial 
location

Viewing 
direction

Fully-connected neural network
9 layers,
256 channels

Output 
color

{ {

Output 
density

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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NeRF (Neural randiance field)



Generate views with traditional volume rendering

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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● How much light is blocked earlier along ray:
3D volume

𝑡𝑡1

Camera

Rendering model for ray r(t) = o + td:
Ray

colors

weights

● How much light is contributed by ray segment i:
Density * Distance Between 
Points

Slide credit: Jon Barron
50

Generate views with traditional volume rendering



Optimize with gradient descent on rendering loss

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Training network to reproduce all input views of the scene

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Can we allocate samples more efficiently?
--Two pass rendering

3D volume

Camera

Ray

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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Two pass rendering:coarse network

3D volume

Camera

Ray

treat weights as probability 
distribution for new samples

Nc = 64

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
54

• Sparsely sample points along ray
• Serve as a coarse guidance



3D volume

Camera

Ray

treat weights as probability 
distribution for new samples

Nf = 128

(coarse + fine)
NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
55

Two pass rendering:fine network

• Use the coarse predicted density to 
resample new points along ray

• Together compute all Nc + Nf points to 
calculate final color for fine network



3D 
volume

Camera

Ray

Nf = 128

(coarse + fine)

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
56

Two pass rendering: optimization

• Optimize coarse network and fine network 
together

• Only use the prediction of fine network 
when rendering a new scene

predicted color 
from coarse 
network

predicted color 
from fine 
network



NeRF (Naive) NeRF (with positional encoding)

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
57

Positional encoding



input signal 
(position, 
direction)Naive

Positional encoding
NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
58

Positional encoding



Input
position

Input
position

Predicted 
Density

Input
direction

Predicted
color

independent from input 
direction 

(L = 10 for 
positional 
encoding)

(L = 4 for 
positional 
encoding)

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
59

Network Structure



Viewing directions as input

• The specular reflection (or other changes influenced by lighting) 
varies  across different views

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

Slide credit: Jon Barron
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• The rendered color changes as the viewing direction
• L: image plane change with viewing direction
• R: fixing image plane while the viewing direction feeded to NeRF changes

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

61

Viewing directions as input



• Another example

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

62

Viewing directions as input



Depth (geometry) Estimation

• The predicted density indicates the object surface
• The estimated depth perfectly shows 

the geometry of foreground object

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020
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• Another example

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020

64

Depth (geometry) Estimation



• By correctly estimate the depth of the scene, virtual objects are 
possible to interact with the real scene

NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis, ECCV 2020
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Depth (geometry) Estimation



NeRF: strength & weakness

Strength
• Photo-realistic texture
• Do not require 3D ground truth
• View-dependent effect

Weakness
• Only fit single scene
• Require much posed images
• Time-consuming rendering (30s per frame) <- Fatal for real-time applications !!

66



What to Cover Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extension of NeRF: Can We Do Faster??

○ Advanced Topics of NeRF
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http://nerf.live/

Baking Neural Radiance Fields 
for Real-Time View Synthesis

Baking Neural Radiance Fields for Real-Time View 
Synthesis, ICCV 2021

68

http://nerf.live/


Independent from input direction

• In original NeRF, most information are independent from input direction
• Those information can be pre-computed and stored before rendering 

69

Basic idea



Slide credit: cs598dwh

● NeRF modified to output diffuse color, density, and 4-d specular features
● Color and features are accumulated along ray, 

and a small network produces a specular residual that is added to color

Baking Neural Radiance Fields for Real-Time View 
Synthesis, ICCV 2021

70

Method: overview



• Precompute diffused
colors/features on voxel grid

• Voxels are stored sparsely and 
divided into local blocks

• In coarse grids, see if occupied;
if so pointer to higher resolution 
color/feature info

• Compute specular component 
from features and add to color

• Result: 
30+ FPS on laptop, 
model < 100 MB

Slide credit: cs598dwh
Baking Neural Radiance Fields for Real-Time View 
Synthesis, ICCV 2021

71

Method: rendering
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NeurMiPs: Neural Mixture of 
Planar Experts for View Synthesis

Zhi-Hao Lin Hao-Yu HsuWei-Chiu Ma Yu-Chiang Frank 
Wang

Shenlong Wang

Slide credit: Zhi-Hao Linhttps://zhihao-lin.github.io/neurmips/
NeurMiPs: Neural Mixture of Planar Experts for View 

Synthesis (CVPR 2022)

https://zhihao-lin.github.io/neurmips/


●Represent scene with mixture of local planar surfaces. (non-parallel)

Slide credit: Zhi-Hao Lin

73NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Method:overview



●Represent scene with mixture of local planar surfaces. (non-parallel)

Mixture of planar experts

Slide credit: Zhi-Hao Lin

74NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Method:overview



●Represent scene with mixture of local planar surfaces. (non-parallel)

Mixture of planar experts

Slide credit: Zhi-Hao Lin

75NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Method:overview



● Represent scene surface: avoid sampling in free space -> speed up

● Flexible plane geometry: allow NVS from wide-range view points

Mixture of planar experts

Slide credit: Zhi-Hao Lin

76NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Method: overview



Input Ray and 
Mixture of Planes

Slide credit: Zhi-Hao Lin

77NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)



Input Ray and 
Mixture of Planes

Slide credit: Zhi-Hao Lin

78NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)



Input Ray and 
Mixture of Planes

Hit Planes and 
Intersecting Points

1. Ray Casting

Slide credit: Zhi-Hao Lin

79NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)



Input Ray and 
Mixture of Planes

Hit Planes and 
Intersecting Points

Transparency Color

1. Ray Casting 2. Planar Neural 
Radiance

Slide credit: Zhi-Hao Lin

80NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)



Input Ray and 
Mixture of Planes

Hit Planes and 
Intersecting Points

Transparency Color Ray Color

1. Ray Casting 2. Planar Neural 
Radiance

3. Alpha-Blending

Slide credit: Zhi-Hao Lin

81NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)



Neural radiance field network
• Input: position, direction
• Output: color, transparency

Slide credit: Zhi-Hao Lin

82NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Method: model



●extract 3D point cloud from multiview images with COLMAP
●Initialize plane position, orientation on points

Multiview images 3D point cloud

COLMAP

Slide credit: Zhi-Hao Lin

83NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR2022)

Method: initialization



For training views, compute and optimize
●Geometry loss:

●Color loss:

●Total: 

Point-rectangle 
distance

Rectangle area 

Slide credit: Zhi-Hao Lin

84NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Method: training



Slide credit: Zhi-Hao Lin

85NeurMiPs: Neural Mixture of Planar Experts for View 
Synthesis (CVPR 2022)

Result



More references about NeRF improvements

● Fourier Features Let Networks Learn High Frequency Functions in Low 
Dimensional Domains (NeurIPS 2020) -> explain why positional encoding works

● PlenOctrees for Real-time Rendering of Neural Radiance Fields (ICCV 2021)
● Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields 

(ICCV 2021)
● KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs 

(ICCV 2021)
● Plenoxels : Radiance Fields without Neural Networks (CVPR 2022)
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What to Cover Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extension of NeRF

○ Advanced Topics of NeRF
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https://alexyu.net/pixelnerf/

pixelNeRF: Neural Radiance Fields from One 
or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021) 88

Three view image pixelNeRF NeRF

https://alexyu.net/pixelnerf/


89pixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)

● Image feature as condition of NeRF
● The NeRF itself learns a object prior 

(e.g., what a general car/chair should look like)
● Able to fit different object/scene with only one NeRF model
● Only need one image (for encoding image feature) of the scene during testing 

on a new scene

Method



90

Results--single category

pixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)
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Results--multi-category

pixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)



DREAMFUSION: 
TEXT-TO-3D USING 2D DIFFUSION

Arxiv

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

https://dreamfusion3d.github.io/

https://dreamfusion3d.github.io/


Goal

● Take description as input and generate corresponding 3D results 
(via 2D rendering)

● Without paired “text and 3D object”
● Combining NeRF and 2D text-to-image diffusion model

93
DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION



Recap: Diffusion model (intuitively)

● Can be viewed as denoising from a Gaussian noise image
● Each step makes little progress of denoising (total about 1000 steps)
● Output image of each step can be seen as the original image combining with 

a noise using specific ratio
● The process can also be seen as predicting the added noise

U-Net model

Pre-defined process 
(adding noise)

94
DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION



Method 
vector from light source

95

● The left part is a standard NeRF with shading condition
● Combine the rendered NeRF image with random noise to simulate a state of 

the text-to-image diffusion model
● The difference between the predicted noise and the inserted noise is treated 

as the rendering loss to guide NeRF 

DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

random chosen



Result

96
DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION
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DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Result



98
DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION

Result



More references about further topics of NeRF

● Editing Conditional Radiance Fields (EditNeRF)(ICCV 2021)
● pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image 

Synthesis (CVPR 2021)
● FENeRF: Face Editing in Neural Radiance Fields (CVPR 2022)
● StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image 

Synthesis (ICLR 2022)
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What We’ve Covered Today?

● Introduction to 3D Vision
● Part I: 3D Perception
● Part II: 3D Reconstruction
● Neural Radiance Fields

○ Extension of NeRF

○ Advanced Topics of NeRF
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