Deep Learning for Computer Vision

Fall 2022

https://cool.ntu.edu.tw/courses/189345 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

What to Cover Today...

- Recap on Transformer
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis
- Meta-Learning
 - Meta-Learning for Few-Shot Learning (FSL)
 - Advanced Issues in Learning from Small Data
 - Few-Shot Segmentation & Detection (if time permits)

"a corgi wearing a bow tie and a birthday hat"

Meta-Training Stage

Meta-Testing Stage

Transformer

- "Attention is all you need", NeurIPS 2017
- Self-attention for text translation

The Decoder in Transformer

 Design similar to that of encoder, except the decoder #1 takes additional inputs (of GT/predicted word embeddings).

The Decoder in Transformer

 Design similar to that of encoder, except the 1st decoder takes additional inputs (of predicted word embeddings).

Vision Transformer

- "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR, 2021. (Google Research)
- Partition the input image into a patch sequence
- An additional token (*) is appended to perform attention on patches
- Both the "*" token and positional embeddings (denoted by 0, 1, 2 ...) are trainable vectors

Query-Key-Value Attention in ViT

- In standard vision transformer, we only take the first output token of the output sequence (the first row of Y) for classification purposes
- This corresponds to the output when token "0" serves as query

Transformer for Semantic Segmentation

Segmentation via attention

Transformer for Semantic Segmentation

Using different class tokens ("Tree", "Sidewalk", "Person", ...) as queries

What to Cover Today...

- Recap on Transformer
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis
- Meta-Learning
 - Parametric vs. Non-Parametric Approaches
 - Meta-Learning for Few-Shot Learning
 - Few-Shot Image Segmentation
 - Few-Shot Object Detection

"a corgi wearing a bow tie and a birthday hat"

Meta-Training Stage

Meta-Testing Stage

A picture is worth a thousand words... Is it that simple?

Vision + Language \rightarrow ?

- Image Captioning
- Image Manipulation/Completion
- Composed Image Retrieval
- Visual Question Answering (VQA) and many more...

Image Captioning

Applications: semantics understanding, image-text retrieval, medical AI, etc.

Image Captioning (cont'd)

- Training a captioning model requires strong supervision
 - A large amount of image-caption data pairs
- Image captioning in the wild:
 - Describing images with novel content during inference
 - For example, COCO dataset has 80 object categories.
 How to generalize captioning models to Open Image (w/ 600 classes)?

COCO (80 classes)

Two pug dogs sitting on a bench at the beach.

A child is sitting on a couch and holding an umbrella.

Image Captioning in the Wild

- Novel Object Captioning (NOC)
 - Training with captioned and uncaptioned data captioned data: labeled image data with captions (e.g., COCO) uncaptioned data: only labels of novel classes available (e.g., Open Images)
 - Will come back to this task later

COCO (80 classes)

Two pug dogs sitting on a bench at the beach.

A child is sitting on a couch and holding an umbrella.

We have captioning data

but w/o captions

Beyond Image Captioning: Unified Vision & Language Model

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training data: triplets of caption-tag-region
 - Objectives:
 - 1. Masked token loss for words & tags
 - 2. Contrastive loss tags and others
 - Fine-tuning:
 5 vision & language tasks (VQA, image-text retrieval, image captioning, NOC, etc.)

Semantics-Aligned Pre-training for V+L Tasks

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training:
 - Inputs: triplets of caption-tag-region
 - Objectives: Masked token loss for words & tags + Contrastive loss tags and others
 - Fine-tuning:
 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

Semantics-Aligned Pre-training for V+L Tasks (cont'd)

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training:
 - Inputs: triplets of word-tag-region
 - Objectives: Masked token loss for words & tags + Contrastive loss tags and others
 - Fine-tuning:
 - 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

Semantics-Aligned Pre-training for V+L Tasks (cont'd)

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Fine-tuning:
 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)
 - Take image captioning as an example
 - Training: triplets of image regions features + object tags + captions as inputs;
 caption tokens with full attention on image regions/tags but not the other way around
 - Inference: image regions, tags and [CLS] as inputs,
 with [MASK] tokens sequentially added/predicted

Oscar (cont'd)

- Fine-tuning:
 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)
- Take image-text retrieval as an example
 - Training: aligned/mis-aligned image-text pairs as positive/negative input pairs, with [CLS] for binary classification (1/0)
 - Inference: for either image or text retrieval, calculate classification score of [CLS] for the input query

Novel Object Captioning

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning (AAAI'21)
 - Pre-training a cross-modality Transformer for vision & language tasks
 - Pre-training really matters, since it's been observed in
 - Computer Vision (e.g., models pre-trained on ImageNet)
 - Natural Language Processing (e.g., BERT pre-trained on Wikipedia)

Object detection, semantic segmentation, etc.

Question answering, Sentence classification, etc.

Recent Work on Novel Object Captioning

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
 - Pre-training: uncaptioned image data containing novel class labels
 - Fine-tuning: (a limited amount of) image data with class labels & descriptions

Novel Object Captioning (cont'd)

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
 - Pre-training: uncaptioned image data containing novel class labels
 - Fine-tuning: (a limited amount of) image data with class labels & descriptions
 - Inference:
 - Inputs: image (with region features & tags) & [CLS]
 - Output: caption

(c) Inference: novel object captioning

A person holding a black umbrella and accordion.

Novel Object Captioning (cont'd)

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
 - Properly aligned image and text data for captioning

Image Change Captioning

- Goal: Caption the difference(s) between input images
 - Inputs: images with difference(s) + ground truth caption for the difference(s)
 - For image pair with one change

For image pair with multiple changes (Yue et al., ICCV'21)

Change captions

Caption 1: The large gray rubber sphere has disappeared. (delete)

Caption 2: There is no longer a large cyan metal cube. (delete)

Caption 3: The large brown metal sphere was moved from its original location. (move)

Caption 4: The small yellow rubber cylinder was replaced by a small red rubber sphere. (replace)

Image Change Captioning

- Goal: Caption the difference(s) between input images
 - Inputs: images with difference(s) + ground truth caption for the difference(s)
 - For image pair with one change

• E.g., Robust Image Change Captioning, Dong et al., ICCV'19

Image Manipulation

- Text-to-Image Synthesis & Manipulation
 - Task #1: Text-to-image generation
 - Produce images based on their descriptions
 - Training: image-caption pairs
 - Recent works: Show & Tell (CVPR'15), StackGAN (ICCV'17), DALL-E (OpenAI)
 - Example:

Teddy bears shopping for groceries in the style of ukiyo-e

DALL-E

- Text-to-Image Synthesis & Manipulation (cont'd)
 - Text-to-image generation
 - Task #2: Image manipulation by text instruction
 - Allow users to edit an image with complex instructions (e.g., add, remove, etc.)
 - Training: reference image & instruction as inputs; target image as output
 - E.g., GeNeVa-GAN (ICCV'19), TIM-GAN (MM'21)
 - Task #3: Text/caption-guided image manipulation
 - Edit image regions to match image descriptions
 - Training: image-caption pairs
 - E.g., GLIDE (OpenAl'21), Tedi-GAN (CVPR'21), ManiTrans (CVPR'22)

Fig. 1 Example of image manipulation by text instruction

Fig. 2 Example of text (caption)-guided image manipulation

Challenges in Text-Guided Image Manipulation

Localization

- Needs to identify objects in an image, locate the target location or objects of interest
- Requires image understanding (with both semantics & spatial info)

Manipulation

- Needs to understand the input caption/instruction for manipulating images
- Preserves object interaction and style to alleviate possible mismatch after manipulation

a fire in the background

Text-Guided Image Manipulation (cont'd)

- Remarks & Opportunities
 - Not easy to collect training data with full supervision
 - Large-scale V&L pre-training models available (e.g., CLIP)
 - Task #2 (manipulate by instruction) vs. Task #3 (manipulate by text guidance)

Fig. 1 Example of image manipulation by text instruction

Fig. 2 Example of text (caption)-guided image manipulation

Can scale up to industrial level with paired training data available

Selected Work on Text-Guided Image Manipulation

GLIDE

- Developed by OpenAI in 2021
- Training:
 - Image-caption pairs and randomly generated masks
 - Learns to recover the missing part based on the caption
- Testing: image, caption, and mask annotated by user
- Later extended by a recent CVPR'22 work (DiffusionCLIP) for semantics improvements

"a corgi wearing a bow tie and a birthday hat"

"only one cloud in the sky today"

Composed Image Retrieval

- Goal
 - Given a reference image and its modification text (i.e., a cross-modal query), retrieve the target image from the database
 - Very different from image-text or text-image retrieval!

Composed Image Retrieval with Pre-trained V&L Models

- Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
 - Extract image features by a pre-trained ResNet
 - Aggregate information from modification text and reference image by a pre-trained OSCAR
 - Instead of use of output token [CLS], the derived output image feature ϕ is used for retrieval

Retrieval with Text-Explicit Matching & Implicit Similarity

- Attention-based Retrieval with
 Text-Explicit Matching and Implicit Similarity (ARTEMIS)
 - Image search with free-form text modifier
 - Cross-modal learning and visual retrieval
 - Text-guided attention is introduced ARTEMIS

- Attention-based Retrieval with
 - Text-Explicit Matching and Implicit Similarity (ARTEMIS) (cont'd)
 - Implicit Similarity (IS):
 attention mechanism focusing on what's not mentioned by text and should be preserved
 - Explicit Matching (EM):
 attention mechanism focusing on what's mentioned by text and should be changed.

Attention-based Retrieval with Text-Explicit Matching and Implicit Similarity (ARTEMIS) (cont'd)

• Example Results & Extension

What to Cover Today...

- Recap on Transformer
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

Meta-Learning

- Parametric vs. Non-Parametric Approaches
- Meta-Learning for Few-Shot Learning
- Few-Shot Image Segmentation
- Few-Shot Object Detection

"a corgi wearing a bow tie and a birthday hat"

Meta-Training Stage

Meta-Testing Stage

Meta Learning 元學習

Normalized Image

1x500x500

Input Image

1x500x500

Meta Learning ⊆ Supervised Learning For Supervised Learning, Given training data $D = \{X, Y\}$, learn function/model f so that $f(x_i) = (y_i)$ Training data X Ground truth labels Y dog frog horse ship truck Pooling: Convs: Convolutions w/ Pooling: Convs: Object Local Divisive Linear 20x4x4 800x7x7 filter bank: 20x4x4 100x7x7 Categories / Positions Normalization Classifier 20x7x7 kernels kernels kernels kernels kernels } at (xi,yi)

S2: 20x123x123

C3: 20x117x117

C1: 20x494x494

} at (xj,yj)

} at (xk,yk)

Nx23x23

What If Only Limited Amount of Data Available?

Naive transfer?

- Model finetuning:
 - Train a learning model (e.g., CNN) on large-size data (base classes), followed by finetuning on small-size data (novel classes).
 - That is, freeze feature backbone (learned from base classes) and learn/update classifier weights for novel classes.
- Question: What would be the concern/limitation?

Selected Applications of Few-Shot Learning in Computer Vision

Few-Shot Image Classification

Vinyals et al., NIPS 2016

Domain Transfer/Generalization

Human Pose/Motion Prediction

Few-Shot Image Segmentation

Selected Applications of Few-Shot Learning in Computer Vision

Few-Shot Image Generation

Few-Shot Image-to-Image Translation

Reed et al., ICLR 2018

Liu et al., ICCV 2019

Generation of Novel Viewpoints

Generating Talking Heads from Images

Meta Learning = Learning to Learn

Let's consider the following "2-way 1-shot" learning scheme:

Question:

- 換句話說,元學習Meta Learning本質上是?
 - (A) 唐國師占星解盤
 - (B) 東施效顰
 - (C) 舉一反三

Some ML Backgrounds (if time permits...)

- We know the biggest problem is that...
 - Can't always collect a large amount of labeled data D in advance.

Now, for the *Meta Learning* scheme...

supervised learning:

$$\arg\max_{\phi}\log p(\phi|\mathcal{D})$$

can we incorporate additional data?

$$\Rightarrow \arg \max_{\phi} \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}})$$

Few-shot data domain of interest

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$$

$$\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

$$\mathcal{D}_{ ext{meta-train}}$$

$$\mathcal{D}_1$$

What Meta Learning Solves:

$$\arg\max_{\phi} \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}})$$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

- what if we don't want to keep $\mathcal{D}_{\text{meta-train}}$ around forever?
- learn meta-parameters θ : $p(\theta|\mathcal{D}_{meta-train})$

whatever we need to know about $\mathcal{D}_{\text{meta-train}}$ to solve new tasks

$$\Rightarrow \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) = \log \int_{\Theta} p(\phi|\mathcal{D}, \theta) p(\theta|\mathcal{D}_{\text{meta-train}}) d\theta$$

$$\approx \log p(\phi|\mathcal{D}, \theta^{\star}) + \log p(\theta^{\star}|\mathcal{D}_{\text{meta-train}})$$

What Meta Learning Solves:

 $\operatorname{arg\,max}_{\phi} \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}})$

 $\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}_{\mathbf{y}}$

 $\Rightarrow \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) = \log \int_{\Theta} p(\phi|\mathcal{D}, \theta) p(\theta|\mathcal{D}_{\text{meta-train}}) d\theta$

$$\approx \log p(\phi|\mathcal{D}, \theta^{\star}) + \log p(\theta^{\star}|\mathcal{D}_{\text{meta-train}})$$

- \Rightarrow arg $\max_{\phi} \log p(\phi | \mathcal{D}, \mathcal{D}_{\text{meta-train}}) \approx \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^{\star})$
- \Rightarrow What meta learning cares is the learning of Φ from D (and implicitly from $D_{meta-train}$)
- \Rightarrow What makes meta learning challenging is the learning of optimal Θ^* from $D_{meta-train}$:

$$\theta^* = \arg\max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$$

A Quick Example

- lack Meta training: $egin{aligned} heta^\star = rg \max_{ heta} \log p(heta | \mathcal{D}_{ ext{meta-train}}) \end{aligned}$
- \Rightarrow Meta testing: $\phi^* = \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^*)$

A Quick Example (cont'd)

✓ Key Idea:

The condition/mechanism of meta-training and meta-testing must match. In other words, meta learning is to learn the mechanism, **not** to fit the data/labels.

Meta-Learning Terminology & Comments

✓ Remarks

- Meta learning: learn a N-way K-shot learning mechanism, not fitting data/labels
- The conditions (i.e., N-way K-shot) of meta-training and meta-testing must match.
- Question: Remarks on N & K vs. performances?

A Closely Related Yet Different Task: Multi-Task Learning

- Meta Learning
 - \Rightarrow Meta training: $\theta^* = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$

$$\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$

 \Rightarrow Meta testing: $\phi^* = \arg \max_{\phi} \log p(\phi | \mathcal{D}, \theta^*)$

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}\$$

- Multi-Task Learning
 - Learn model with parameter Θ* that simultaneously solves multiple tasks

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \log p(\theta|\mathcal{D}_i)$$

Can be viewed as a special case where

$$\phi_i = \theta$$
 (i.e., $f_{\theta}(\mathcal{D}_i) = \theta$)

What to Cover Today...

- Recap on Transformer
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

Meta-Learning

- Meta-Learning for Few-Shot Learning
 - Parametric vs. Non-Parametric Approaches
- Few-Shot Image Segmentation
- Few-Shot Object Detection

"a corgi wearing a bow tie and a birthday hat"

Meta-Training Stage

Meta-Testing Stage

Approaches

- Two Ways to View Meta Learning
 - Probabilistic View (e.g., optimization-based)
 - Extract prior info from a set of (meta training) tasks, allowing efficient learning of a new task (i.e., meta-testing)
 - Learning a new task uses this prior and (small) training set to infer most likely posterior model parameters
 - → Easy to understand meta learning algorithms
 - Mechanistic View (e.g., metric-learning based)
 - Meta training: A learning model (e.g., DNN) reads in a meta-dataset which consists of many datasets, each for a different task
 - Meta-testing: the model observes new data points (for a novel task) and make prediction accordingly
 - → Easy to implement meta learning algorithms

Approach #1: Optimization-Based Approach

- Model-Agnostic Meta-Learning (MAML)*
 - Key idea:
 - Train over many tasks (with a small amount of data & few gradient steps), so that the learned model parameter would generalize to novel tasks
 - Learning to initialize/fine-tune
 - Meta-Learner $\Phi \rightarrow \Theta_0$:
 - Learn a parameter initialization Θ_0 of model that transfers/generalizes to novel tasks well.
 - That is, learn model Θ_0 which can be fine-tuned by novel tasks efficiently/effectively.

optimize model parameter θ so that it can quickly adapt to new tasks

MAML

Loss Function:

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n (\hat{\theta}^n)$$

 $l^n(\hat{\theta}^n)$: loss of task n on the query set of task n

 $\hat{\theta}^n$: model learned from the support set of task n

Illustration of MAML

MAML doesn't care how model θ^0 performs on each task.

$$L(\theta^0) = \sum_{n=1}^{N} l^n(\theta^n)$$

It only cares how model θ^n performs for task n when starting from a properly learned θ^0 . In other words, a good θ^0 matters!

Slide credit: H.-Y. Lee

 Comparison: Model Pre-Training or Multi-Task Learning

$$L(\theta^0) = \sum_{n=1}^N l^n(\theta^0)$$

Determine the best θ^0 for all existing tasks

However, no guarantee that θ^0 is preferable for learning good θ^n for task n. Again, a good θ^0 really matters!

MAML

- Remarks
 - Train a good initialized parameter set Φ (i.e., θ^0) for quick adaptation/generalization
 - Meta-training:

$$L(\phi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Meta-testing (for adaptation):

$$\hat{\theta} = \phi - \varepsilon \nabla_{\phi} l(\phi)$$

Note that one or multiple updates can be performed during meta-testing.

Meta-Training in MAML

 φ : initial model parameters

 $\hat{\theta}$: model parameters updated via the support set

$$\varphi \leftarrow \varphi - \eta \cdot \nabla_{\varphi} L(\varphi) \tag{1}$$

$$L(\varphi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$
 (2)

$$\hat{\theta} = \varphi - \varepsilon \cdot \nabla_{\varphi} l(\varphi) \tag{3}$$

$$\nabla_{\varphi}L(\varphi) = \sum_{n=1}^{N} \nabla_{\varphi}l^{n}(\hat{\theta}^{n})$$
 (4)

$$\nabla_{\varphi} l\left(\hat{\theta}\right) = \begin{bmatrix} \frac{\partial l(\theta)}{\partial \varphi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{i}} \end{bmatrix}$$
 (5)

MAML

$$\frac{\partial l(\hat{\theta})}{\partial \varphi_i} = \sum \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \varphi_i}$$

$$\hat{\theta} = \varphi - \varepsilon \cdot \nabla_{\varphi} l(\varphi) \tag{3}$$

$$\nabla_{\varphi}L(\varphi) = \sum_{n=1}^{N} \nabla_{\varphi}l^{n}(\hat{\theta}^{n}) \tag{4}$$

$$\nabla_{\varphi} l\left(\hat{\theta}\right) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \varphi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{i}} \end{bmatrix} \tag{5}$$

First-order approximation:

If $i \neq j$, then:

$$\hat{\theta}_j = \varphi_j - \varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_j}$$

$$\hat{\theta}_{j} = \varphi_{j} - \varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{j}} \qquad \frac{\partial \hat{\theta}_{j}}{\partial \varphi_{i}} = -\varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{j} \partial \varphi_{i}} \approx 0$$

If i = j, then:

$$\frac{\partial \hat{\theta}_{j}}{\partial \varphi_{i}} = 1 - \varepsilon \cdot \frac{\partial l(\varphi)}{\partial \varphi_{j} \partial \varphi_{i}} \approx 1$$

 φ : initial model parameters

 $\hat{\theta}$: model parameters updated via the support set

$$\nabla_{\varphi} l\left(\hat{\theta}\right) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \varphi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \varphi_{i}} \end{bmatrix} = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_{i}} \end{bmatrix} = \nabla_{\hat{\theta}} l\left(\hat{\theta}\right)$$

$$\nabla_{\varphi}L(\varphi) = \sum_{n=1}^{N} \nabla_{\varphi}l^{n}(\hat{\theta}^{n}) = \sum_{n=1}^{N} \nabla_{\widehat{\theta}}l^{n}(\hat{\theta}^{n})$$

Recap: MAML

- Remarks
 - Train a good initialized parameter set Φ (i.e., θ^0) for quick adaptation/generalization
 - Meta-training:

$$L(\phi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

• Meta-testing (for adaptation):

$$\hat{\theta} = \phi - \varepsilon \nabla_{\phi} l(\phi)$$

Note that one or multiple updates can be performed during meta-testing.

Approaches

- Two Ways to View Meta Learning
 - Probabilistic View (e.g., optimization-based)
 - Extract prior info from a set of (meta training) tasks, allowing efficient learning of a new task (i.e., meta-testing)
 - Learning a new task uses this prior and (small) training set to infer most likely posterior model parameters
 - → Easy to understand meta learning algorithms
 - Mechanistic View (e.g., metric-learning based)
 - Meta training: A learning model (e.g., DNN) reads in a meta-dataset which consists of many datasets, each for a different task
 - Meta-testing: the model observes new data points (for a novel task) and make prediction accordingly
 - → Easy to implement meta learning algorithms

Approach #2: Non-Parametric Approach

- Can models learn to compare?
- E.g., Siamese Network
 - Learn a network to determine whether a pair of images are of the same category.

Learn to Compare (cont'd)

- Siamese Network (cont'd)
 - Meta-training/testing: learn to match (i.e., 2-way image matching)
 - Question: output label of the following example is 1 or 0? (i.e., same ID or not)

Learn to Compare (cont'd)

- Siamese Network (cont'd)
 - Meta-training/testing: learn to match (i.e., 2-way image matching)
 - Question: output label of the following example is 1 or 0? (i.e., same ID or not)

MARTISTORS
SEPTIMBER 3

- What did we learn from these examples?
- And, can we perform multi-way classification (beyond matching)?

Learn to Compare...with the Representative Ones!

Prototypical Networks

- Learn a model which properly describes data in terms of intra/inter-class info.
- Learn a prototype for each class, with data similarity/separation guarantees.

Prototypical Networks (cont'd)

- Learn a model which properly describes data in terms of intra/inter-class info.
- It learns a prototype for each class, with data similarity/separation guarantees.
- For DL version, the above embedding space is derived by a non-linear mapping f_{ϕ} and the representatives (or anchors) of each class is the **mean feature vector c**_k.

Snell et al., Prototypical Networks for Few-Shot Learning, NIPS 2017

Learn to Compare

Matching Networks

- Inspired by the **attention** mechanism, access an augmented memory containing useful info to solve the task of interest
- The authors proposed a weighted nearest-neighbor classifier, with attention over a learned embedding from the support set $S = \{(x_i, y_i)\}_{i=1}^k$, so that the label of the query \hat{x} can be predicted.

Matching Networks (cont'd)

- Full context embedding (FCE)
- Each element in S should not be embedded independently of other elements
 - $g(x_i) \rightarrow g(S)$ as a **bidirectional LSTM** by considering the whole S as a **sequence**
- Also, S should be able to modify the way we embed \hat{x}
 - $f(\hat{x}) \rightarrow f(\hat{x}, S)$ as an **LSTM** with **read-attention** over g(S): attLSTM $(f'(\hat{x}), g(S), K)$, where $f'(\hat{x})$ is the (fixed) CNN feature, and K is the number of unrolling steps
- Experiment results on minilmageNet

Model	Matching Fn	Fine Tune	5-way Acc 1-shot 5-shot
PIXELS	Cosine	N	23.0% 26.6%
BASELINE CLASSIFIER	Cosine	N	36.6% 46.0%
BASELINE CLASSIFIER	Cosine	Y	36.2% 52.2%
BASELINE CLASSIFIER	Softmax	Y	38.4% 51.2%
MATCHING NETS (OURS)	Cosine	N	41.2% 56.2%
MATCHING NETS (OURS)	Cosine	Y	42.4% 58.0%
MATCHING NETS (OURS)	Cosine (FCE)	N	44.2% 57.0%
MATCHING NETS (OURS)	Cosine (FCE)	Y	46.6% 60.0%

query example \hat{x}

Learn to Compare

- Matching Networks (cont'd)
 - If we have g=f, the model turns into a Siamese network like architecture
 - Also similar to prototypical network for one-shot learning

Learn to Compare...with Self-Learned Metrics!

Relation Network

- Metric-learning approaches typically focus on learning an embedding function with a fixed metric (e.g., Euclidean distance, cosine similarity, ...)
- The authors proposed to train a **Relation Network** (RN) to explicitly learn a transferrable **deep distance metric** comparing the relation between images

Relation Networks (cont'd)

- Extension to zero-shot learning (if time permits):
 - Instead of few-shot images, the support set contains a **semantic embedding vector** \mathbf{v}_k (e.g., embedding of class label) for each training class.
 - One can use a **heterogeneous** embedding function g_{ϑ} to embed the semantic embedding vectors, which relates the image data $f_{\phi}(\mathbf{x}_i)$
 - E.g., **Prototypical Network** for zero-shot image classification:

Some Takeaways for Existing Meta-Learning Approaches

Parametric-based

- + handles varying & large K well
- + structure lends well to out-ofdistribution tasks
- second-order optimization

Non-parametric based

- + simple
- + entirely **feedforward**
- + computationally fast & easy to optimize
- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Generally, well-tuned versions of each perform **comparably** on existing FSL benchmarks.

What to Cover Today...

- Recap on Transformer
- Vision & Language
- Meta-Learning
 - Meta-Learning for Few-Shot Learning
 - Parametric vs. Non-Parametric Approaches
 - Metric Learning vs. Data Hallucination
 - Advanced Issues in Learning from Small Data

"a corgi wearing a bow tie and a birthday hat"

Meta-Training Stage

Meta-Testing Stage

A Super Brief Intro/Review for Generative Adversarial Networks (GAN)

- Design of GAN
 - Loss: $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 D(G(x)))] + \mathbb{E}[\log D(y)]$

Learn to Augment...Data Hallucination for FSL (1/3)

- Data Hallucination by Conditional GAN
 - Can we learn a model resulting in a desirable invariance space, which can be derived by a conditional GAN in the source domain (\mathcal{C}_{base}), and apply it to the target domain (\mathcal{C}_{novel})?

Data Augmentation GAN

(Left) Generator $\mathbf{r}_i = Enc(\mathbf{x}_i)$ $\mathbf{z}_i \sim N(\mathbf{0}, \mathbf{I})$ $\mathbf{x}_g = Dec(\mathbf{z}_i, \mathbf{r}_i)$

Discriminator:

 $D(\mathbf{x}_i, \mathbf{x}_j) \rightarrow \text{Real pair}$ $D(\mathbf{x}_i, \mathbf{x}_g) \rightarrow \text{Fake pair}$

Question:

Why not verify \mathbf{x}_j and \mathbf{x}_g ? i.e., why conditioned on \mathbf{x}_i ?

- (1) prevent the generator from simply output the original image \mathbf{x}_i (2) to improve diversity (aka. mode collapse)
- → (1) or (2) or...?

Learn to Augment...Data Hallucination for FSL (cont'd)

- Jointly Trained Hallucinator
 - The hallucinated examples should be useful for classification tasks, rather than just being diverse or realistic (that may fail to improve FSL performances).
 - The authors proposed to train a **conditional-GAN-based** data hallucinator (G(x, z)) **jointly** with the meta-learning module (h) in an **end-to-end** manner.

Further Remarks: A Closer Look at FSL (1/3)

- Idea
 - Deeper backbones significantly reduce the gap across existing FSL methods.
 (with decreased domain shifts between base and novel classes)
 - A slightly modified baseline method (baseline++) surprisingly achieves competitive performance.
 - Simple baselines (baseline and baseline++: trained on base and fine-tuned on novel) outperform representative FSL methods when the domain shift grows larger.

use **cosine distances** between the input feature and the weight vector for each class to reduce intra-class variations

A Closer Look at FSL (2/3)

- Performance with deeper backbones
 - For CUB, gaps among different methods diminish as the backbone gets deeper.
 - For mini-ImageNet, some meta-learning methods are even beaten by baselines with a deeper backbone.

A Closer Look at FSL (3/3)

- Performance with domain shifts (using ResNet-18)
 - Existing FSL methods fail to address large domain shifts (e.g., mini-ImageNet → CUB) and are inferior to the baseline methods.
 - This highlights the importance of learning to adapt to domain differences in FSL.

What to Cover Today...

- Recap on Transformer
- Vision & Language
- Meta-Learning
 - Meta-Learning for Few-Shot Learning
 - Parametric vs. Non-Parametric Approaches
 - Metric Learning vs. Data Hallucination
 - Advanced Issues in Learning from Small Data
 - Few-Shot Image Segmentation
 - Few-Shot Object Detection (next lecture)
 - Anomaly Detection (next lecture)

"a corgi wearing a bow tie and a birthday hat"

Meta-Training Stage

Meta-Testing Stage

Semantic Segmentation

- Goal
 - Assign a class label to each pixel in the input image
 - Don't differentiate instances, only care about pixels

Few-Shot Segmentation

- Images of base categories are with pixel-wise ground truth labels,
 while those of novel classes them are with limited amounts of GT pixel-wise labels.
- A shared CNN backbone produces feature maps for both support and query images.
- Prototypes for each class is obtained by masked pooling from support feature maps.
- Query feature maps are then compared with the prototypes in a **pixel-by-pixel** fashion.
- Typically, **cosine similarity** is adopted for pixel-wise feature comparison.

