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What to Cover Today...

* Recap on Transformer

* Vision & Language
* Image Captioning
* Text-to-Image Synthesis

* Meta-Learning

* Meta-Learning for Few-Shot Learning (FSL)
e Advanced Issues in Learning from Small Data
* Few-Shot Segmentation & Detection (if time permits)
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Transformer

e “Attention is all you need”, NeurlPS 2017

e Self-attention for text translation
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The Decoder in Transformer

* Design similar to that of encoder, except the decoder #1
takes additional inputs (of GT/predicted word embeddings).
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The Decoder in Transformer

* Design similar to that of encoder,
except the 15t decoder takes additional inputs (of predicted word embeddings).
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Vision Transformer

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”,
ICLR, 2021. (Google Research)

e Partition the input image into a patch sequence
* An additional token (*) is appended to perform attention on patches

* Both the “*” token and positional embeddings (denoted by 0, 1, 2 ...) are
trainable vectors
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Query-Key-Value Attention in ViT

* In standard vision transformer, we only take the first output token of
the output sequence (the first row of Y) for classification purposes

* This corresponds to the output when token “0” serves as query
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Transformer for Semantic Segmentation

* Segmentation via attention

Segmentation map Patch attention maps

Strudel et al. "Segmenter: Transformer for Semantic Segmentation." ICCV 2021



Transformer for Semantic Segmentation

* Using different class tokens (“Tree”, “Sidewalk”, “Person”, ...) as queries
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What to Cover Today...

* Vision & Language
* Image Captioning
* Text-to-Image Synthesis

“a corgi wearing a bow tie and a birthday hat™
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A picture is worth a thousand words...
Is it that simple?

_ o o Thin v’ : -_
‘ 'Airplane
* Flying airplane in blue sky _
* A Lufthansa MD-11 cargo plane in blue sky- |
flying over mountainous terrain




Vision + Language = ?

Image Captioning
Image Manipulation/Completion
Composed Image Retrieval

Visual Question Answering (VQA)
and many more...
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Image Captioning

Applications: semantics understanding, image-text retrieval, medical Al, etc.
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Image Captioning (cont’d)

* Training a captioning model requires strong supervision
e Alarge amount of image-caption data pairs

* Image captioning in the wild:
* Describing images with novel content during inference

* For example, COCO dataset has 80 object categories.
How to generalize captioning models to Open Image (w/ 600 classes)?

COCO (80 classes) Open Images (600 classes)

i -

{ Two pug dogs sitting
on a bench at the

i d‘_
b@ﬂCh- Loy R | : :
goat artichoke accordion

A child is sitting

L -
> J{ on a couch and
- b holding an umbrella.
[ . g

dolphin waffle balloon
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Image Captioning in the Wild

* Novel Object Captioning (NOC)

* Training with captioned and uncaptioned data
captioned data: labeled image data with captions (e.g., COCO)
uncaptioned data: only labels of novel classes available (e.g., Open Images)

* Will come back to this task later

COCO (80 classes)

Two pug dogs sitting
on a bench at the
beach.

A child is sitting
on a couch and
B holding an umbrella.

We have captioning data

Open Images (600 classes)

artichoke

accordion

waffle

dolphin balloon

Data with labels for novel objects
but w/o captions
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Beyond Image Captioning:
Unified Vision & Language Model

Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)
* Training data:

triplets of -tag-region
* Objectives:
1. Masked token loss for & tags

2. Contrastive loss tags and others
* Fine-tuning:
5 vision & language tasks (VQA, image-text retrieval, image captioning, NOC, etc.)

~

Image-Text Pairs: 6.5M Understanding
(I) Masked Token Loss (2) Contrastive Loss O VOQA OGQA ONLVR2
Image-Text Representation O Image-Text Retrieval O Text-Image Retrieval

( A dog is sitting Dog

: ) Generation
onacouch ! Couch 'I

~Tag- ik O Image Captioning O Novel Object Captioning

S

Pre-training —— Fine-tuning
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Semantics-Aligned Pre-training for V+L Tasks

* Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)

* Training:
* Inputs: triplets of -tag-region
* Objectives: Masked token loss for & tags + Contrastive loss tags and others
Contrastive Loss Masked Token Loss
Fawes () O O O O OO OC O OO O O O
Network Multi-Layer Transformers
Emeddingg (Y (O OO OO O OO O O O O O O
[CLS] A dog is [MASK] on a [SEP] dog
Data “ — 2 %\/—J
Word Tokens Object Tags Region Features
Modality
Dictionary
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Semantics-Aligned Pre-training for V+L Tasks (cont’d)

* Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)

* Fine-tuning:
* 5vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

Contrastive Loss Masked Token Loss
Fawes () O O O O OO OC O OO O O O
Network Multi-Layer Transformers
Embeddngs () () (O OO O O O O O O O O O

[CLS] A dog is [MASK] on a [SEP] dog ‘

Data h g g %\/—j
Word Tokens Object Tags Region Features

Modality
Dictionary
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Semantics-Aligned Pre-training for V+L Tasks (cont’d)

* Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV’20)
* Fine-tuning:

* Take image captioning as an example

* Training: triplets of image regions features + object tags + as inputs;
caption tokens with full attention on image regions/tags but not the other way around

* Inference: image regions, tags and [CLS] as inputs,
with [MASK] tokens sequentially added/predicted

Contrastive Loss Masked Token Loss

Features O O O 0O 0O 00 0o o ) O O ) ]

L

Network Multi-Layer Transformers

[CLS] A dog is [MASK] on a [SEP] dog
Data L. — S %(—/
Word Tokens Object Tags Region Features
Modality
Dictionary
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Oscar (cont’d)
* Fine-tuning:

J
Holding an apple “ R or {‘)J

* Take image-text retrieval as an example
* Training: aligned/mis-aligned image-text pairs as positive/negative input pairs,
with [CLS] for binary classification (1/0)
* Inference: for either image or text retrieval,
calculate classification score of [CLS] for the input query

Contrastive Loss

Masked Token Loss

rewes (O] O O O OO0 0 O O 0 O 0O O

Network

Multi-Layer Transformers

Embeddings Q Q Q Q Q Q Q Q Q Q Q Q Q Q

T =
[CLS] A dog is [MASK] on a . [SEP] dog couch  [SEP]
Data - -~ s H_/ H_/
Word Tokens Object Tags Region Features
Image
Modality Language g N
Language
Dictionary o Image
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Novel Object Captioning

* VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning (AAAI’21)
* Pre-training a cross-modality Transformer for vision & language tasks
* Pre-training really matters, since it’s been observed in
* Computer Vision (e.g., models pre-trained on ImageNet)
* Natural Language Processing (e.g., BERT pre-trained on Wikipedia)
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Object detection, Question answering,
semantic segmentation, etc. Sentence classification, etc.
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Recent Work on Novel Object Captioning

* VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
* Pre-training: uncaptioned image data containing novel class labels
* Fine-tuning: (a limited amount of) image data with class labels & descriptions

accordion
= 1
Open Images &
Multi-layer Transformer
6.4K tags
w/o caption

animal, person, [MASK], hat iy 7
p iNAMm=

attention mask

person dog
t t
coco
Multi-layer Transformer
80 objects
w/ caption
" g ]
. - [_CL;] a [MASK] holding a [MASK] person, dog, couch - ": .
“A person holding a dog sitting on a couch.” sitting on a couch. [SEP] - '

(b) Fine-tuning: learn sentence description sttention mask
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Novel Object Captioning (cont’d)

* VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning

* Inference:
* Inputs: image (with region features & tags) & [CLS]
*  Qutput: caption

accordion

T

Multi-layer Transformer

A person holding a black
umbrella and accordion.

[CLS] a person holding a
black umbrella and [MASK]

person, umbrella, accordion

(c) Inference: novel object captioning
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Novel Object Captioning (cont’d)

VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
* Properly aligned image and text data for captioning
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Image Change Captioning

Goal: Caption the difference(s) between input images
* |Inputs: images with difference(s) + ground truth caption for the difference(s)
* For image pair with one change

<Before> <After> <Change Captions>

“the tiny
® cylinder changed
its location”

“the people in the
® parking lot are no
longer there”

* For image pair with multiple changes (Yue et al., ICCV’'21)

Change captions

Caption 1: The large gray rubber sphere has
disappeared. (delete)

Caption 2: There is no longer a large cyan metal
cube. (delete)
Caption 3: The large brown metal sphere was moved

from its original location. (move)

Caption 4: The small yellow rubber cylinder was
replaced by a small red rubber sphere. (replace)
25




Image Change Captioning

* Goal: Caption the difference(s) between input images

* |Inputs: images with difference(s) + ground truth caption for the difference(s)

* For image pair with one change

<Before> <After> <Change Captions>

“the tiny
® cylinder changed
its location”

“the people in the
® parking lot are no
longer there”

s

e E.g., Robust Image Change Captioning, Dong et al., ICCV’19
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Image Manipulation

* Text-to-lmage Synthesis & Manipulation
e Task #1: Text-to-image generation
* Produce images based on their descriptions
* Training: image-caption pairs
» Recent works: Show & Tell (CVPR’15), StackGAN (ICCV’17), DALL-E (OpenAl)
* Example:

Teddy bears shopping for groceries
in the style of ukiyo-e

DALL-E
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* Text-to-Image Synthesis & Manipulation (cont’d)

e Task #2: Image manipulation by text instruction
* Allow users to edit an image with complex instructions (e.g., add, remove, etc.)
* Training: reference image & instruction as inputs; target image as output
* E.g., GeNeVa-GAN (ICCV’19), TIM-GAN (MM’21)
» Task #3: Text/caption-guided image manipulation
* Edit image regions to match image descriptions
* Training: image-caption pairs
* E.g., GLIDE (OpenAl’21), Tedi-GAN (CVPR’21), ManiTrans (CVPR’22)

Input Result Input Result

i

-

make middle-left small Ayellow tower.

gray object large

Fig. 1 Example of image manipulation by text instruction Fig. 2 Example of text (caption)-guided image manipulation
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Challenges in Text-Guided Image Manipulation

e Localization
* Needs to identify objects in an image, locate the target location or objects of interest
* Requires image understanding (with both semantics & spatial info)

* Manipulation
* Needs to understand the input caption/instruction for manipulating images
* Preserves object interaction and style to alleviate possible mismatch after manipulation

Localization Manipulation

a fire in the background
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Text-Guided Image Manipulation (cont’d)

* Remarks & Opportunities
* Not easy to collect training data with full supervision
e Large-scale V&L pre-training models available (e.g., CLIP)
* Task #2 (manipulate by instruction) vs. Task #3 (manipulate by text guidance)

Input Result Input Result

*

make middle-left small A yellow tower.
gray object large

Fig. 1 Example of image manipulation by text instruction Fig. 2 Example of text (caption)-guided image manipulation

e Can scale up to industrial level with paired training data available

30



Selected Work on Text-Guided Image Manipulation

* GLIDE
* Developed by OpenAl in 2021
* Training:

* Image-caption pairs and
randomly generated masks

* Learns to recover the missing part
based on the caption

* Testing: image, caption, and mask annotated by user
» Later extended by a recent CVPR’22 work (DiffusionCLIP) for semantics improvements

“a corgi wearing a bow tie and a birthday hat” “only one cloud in the sky today”
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Composed Image Retrieval

e Goal

* Given a reference image and its modification text (i.e., a cross-modal query),
retrieve the target image from the database

* Very different from image-text or text-image retrieval!

I | want to change it to longer
sleeves and yellow in color.

Reference Image Modification Text Target Image

32



Composed Image Retrieval
with Pre-trained V&L Models

* Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

* Extract image features by a pre-trained ResNet

* Aggregate information from modification text and reference image by a pre-trained OSCAR

* Instead of use of output token [CLS], the derived output image feature ¢ is used for retrieval

Text t - r ™
> T

more people in it.”

“A bigger pub with 1 okenize | 1

hl

Wr_g| |wr [1‘1

{

;-‘ i z ResNet )—*( FC+NormaIize)—[ [v.: |'w_7| @ Q

IRefererl:»e i

Shared weights [

VLP Multi-layer Transformers

Ll Lt

ResNet J—ﬁ[ FC + Normalize }

Targdtimage Iy

i T

Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models. Zheyuan Liu et al. ICCV 2021
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Retrieval with Text-Explicit Matching & Implicit Similarity

* Attention-based Retrieval with
Text-Explicit Matching and Implicit Similarity (ARTEMIS)

* Image search with free-form text modifier

* Cross-modal learning and visual retrieval

* Text-guided attention is introduced ARTEMIS

Visual search I ‘ A Ir i
ARTEMIS _ _: ) * 5 b
/—‘/ ,ll]|| L : m | ~1“.h
EM = - a
Iv cream in color ¢ ;J ‘ .. {: 1
i || L | % L
Cross-modal search E :

ARTEMIS: Attention-based Retrieval with Text-Explicit Matching & Implicit Similarity. Ginger Delmas et al. ICLR 2022 34



source imige

target image

text modifier

Attention-based Retrieval with
Text-Explicit Matching and Implicit Similarity (ARTEMIS) (cont’d)

* Implicit Similarity (IS):

attention mechanism focusing on what’s not mentioned by text and should be preserved

* Explicit Matching (EM):

attention mechanism focusing on what’s mentioned by text and should be changed.

r Attention mechanisms —

&
CNN — 5 =
Backbone g i
=
L L Implicit Similarity (IS)
&
CNN ] 5 =
Backbone g e ~,
3 ®
_ — Final score
Shared weights
| B
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T "

remave one dog, add grass,

puaks ane dog black I GLOVE —— LSTM / BiGRU 4‘ }~—
| § Tr(m)

4TI

() Explicit Matching (EM) H

[

ARTEMIS: Attention-based Retrieval with Text-Explicit Matching & Implicit Similarity. Ginger Delmas et al. ICLR 2022

Visual encoder

Textual encoder

Pointwise product

Cosine similarity

Normalized vectorial
representation

Weighting scores
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Attention-based Retrieval with

Text-Explicit Matching and Implicit Similarity (ARTEMIS) (cont’d)

* Example Results & Extension

Target Query Target

-0 \-A

Is white
[and] is a
lighter color E
and has a
looser fit

Hide part of
the body of
the white
dog behind
atres
trunk.

More dogs
and they
are mare
huddled on

ARTEMIS: Attention-based Retrieval with Text-Explicit Matching & Implicit Similarity. Ginger Delmas et al. ICLR 2022

Query Target

&8 R

have laces,
not a Velcro ﬁ
clasure

IS } same acj_el’ﬂclem f.



What to Cover Today...

* Meta-Learning
e Parametric vs. Non-Parametric Approaches
* Meta-Learning for Few-Shot Learning

* Few-Shot Image Segmentation
« Few-Shot Object Detection Meta-Training Stage

Base class data

Feature

extractor ,,9.'?.’.5.§?ﬁ9! !

x, - cowo—y

Meta-Testing Stage

Novel class data Fixed ’
(Few) Feature . @
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“a corgi wearing a bow tie and a birthday hat™



Meta Learning 702 &

* Meta Learning € Supervised Learning

* For Supervised Learning,

* Given trainingdata D = {X, Y},
learn function/model f so that f(x,) =y,

apane ot NN B ™ - BRI R
automobile EEE.E‘HHE‘

bird

Training data X Ground truth labels Y

cat

deer

~
don Elﬁﬂ&ﬁﬂﬂﬂl
fog EIIEIHDIII

horse

ship

e D .
o thlﬂﬂiﬂll

. Convolutions w/ Pooling: Convs: Pooling: Convs: ; i
Local Divisive . ' Linear Object
Normalization filter bank: 20x4x4 100x7x7 20x4xd 800x7Tx7 Classfiier Categories / Positions

20x7%7 kernels kernels kernels kernels kernels

»{ Q 1at (i)

<

=

ol !:,-;'- Yat .yl

Input Image Normalized Image
1x500x500 1x500x500

}at (o)
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What If Only Limited Amount of Data Available?

* Naive transfer?
* Model finetuning:

- Train a learning model (e.g., CNN) on large-size data (base classes),
followed by finetuning on small-size data (novel classes).

- That is, freeze feature backbone (learned from base classes)
and learn/update classifier weights for novel classes.

* Question: What would be the concern/limitation?

Training stage

Base class data

Feature

extractor Classifier

Fine-tuning stage
Novel class data Fixed
(Few) Feature

oy . extractor E.@ﬁ?iﬁ?[‘ -

# of data

big data

small data

/

AN

objects of interest,
driving scenarios, etc.
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Selected Applications of
Few-Shot Learning in Computer Vision

* Few-Shot Image Classification * Human Pose/Motion Prediction

training data test set

] 2 IO 3
i .ar. E (a)

meta-training I

Smoking

— EOS EO,BK
meta-testing L@ — E gos ggi\-&—-_ EER:“:"'E , I ‘ Il
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: : C R S SRS R R e e e e e S ;
i 1 2 51020 50100 1 2 5 1020 50100
k k
Vinyals et al., NIPS 2016 Gui et al., ECCV 2018
* Domain Transfer/Generalization * Few-Shot Image Segmentation
Source Domains Target Domains
6-66--@-8-{3--&"1 -------------- Support Task Representatio
R o
: K <><> A% Test . :;'. bﬁu
_ Meta-fest - 0 i
| | 000000
%%%O 06,00
A : 0 0
Traind, OO

Li et al., AAAI 2018 Wang et al., ICCV 2019 40



Selected Applications of
Few-Shot Learning in Computer Vision

* Few-Shot Image Generation * Few-Shot Image-to-Image Translation
Source WithAttn_ ] No Attn Source With Attn No Attn Training Desiloymint
EEE ot ol LEY 'u T e
nY go e il
~r= ‘jﬂ *,E = B
Hostbad sz sndel il GEIRER O
(?Hbﬁt@ ahot E Laad " Source css 15| Source class 415
shined 4 dh
Reed et al., ICLR 2018 Liu et al., ICCV 2019
e Generation of Novel Viewpoints * Generating Talking Heads from Images
5 O e 8 e e B @ C-VAE |
shot ::_ﬂﬁﬁ-ﬁ‘:c‘:‘:_ﬁ G :
: : ;‘hﬁu%‘t £ ;‘,{"'_fl <. =% T, Ground Truth :
¥Rt ) YRR e 1
F¥Y 1 ¥ [ o v : . | L.
\;f‘q.f '* 1 q( ‘;f'-;r\;r ; [ +' ‘+' Ground Truth Source ' Target — Landmarks — Result

Gordon et al., NIPS Workshop 2018 Zakharov et al., ICCV 2019 41



Meta Learning = Learning to Learn

* Let’s consider the following “2-way 1-shot” learning scheme:

Meta-Training -

Meta-Testing

Task i

Task i+1

1 Novel

Task

Train

Support set

Test

Query set

Train

Slide credit: H.-Y. Lee

Predict:
+or-

Predict:
+or-

Bike
as + or-?
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Question:

« REFEET - T2 B Meta LearningNE _EZ2?
(A) FE R BN 5 2/
(B) ERJin %4 28
(C) 8E—x=
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Some ML Backgrounds (if time permits...)

* (Standard) Supervised Learning ﬁ/
¥ “cat”
arg max log p(¢|D) D={(z1,11), ..., (x5 yr)}

¢
S [ ‘\Iabel
model parameters training data nout (e.g., image)

= arg m:;;tx lo/g'p(D\(b) + logp(gb)

data likelihood regularizer (e.g., weight decay)

— arg mgxz log p(yi|zi, @) + log p(@)

* We know the biggest problem is that...
* Can’t always collect a large amount of labeled data D in advance.
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* Now, for the Meta Learning scheme...

supervised learning:

arg max log p(¢|D)

) can we incorporate additional data?

Few-shot data domain of interest

L —
D={(x1,91),.--, (Tk,yx)}

Dmeta—train — {D17 <. 7Dn}

» arg mgx 10gp(¢’D7Dmeta-train) Dz — {(wiv yi)) cee (ZB%C, yl?:c)}

"
— -
| r
-
a5 ~
.o
o
]

Greek

o<

o Elc| TS
oS @] R —
Y | LA
-=| g | oo
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] Object label:
What Meta Learning Solves: “cat”

/ﬁ/
f

X

arg m(?x log p(gbﬂ), Dmeta—train) Dmeta—train — {Dla ..

D = {($1,y1), sy (xkayk)}

® what if we don’t want to keep Dieta-train around forever?

®» learn meta-parameters 0: p(0|Dmeta-train)

\

whatever we need to know about Dieta-train tO solve new tasks

» 10gp(¢|D7Dmeta—train) — IOg/ p(¢|pa e)p(9|pmeta—train)d9
S

~ 10gp(¢|p, (9*) + logp(9*|pmeta—train)

Object ID:
“person”

., Dn}

™o <

o E|lc| =S
Wil S || R —

Y S| <A 8
& 0|70 [om

46




What Meta Learning Solves: - ‘ N

¥ Object ID:

label:
“cat” =8 “person”
X e
arg m(?x log p(¢|D, Dieta-train) @meta—train ={D1,...,D,} )
D = {(Ihyl)a <oy (xkayk:)} |t r[;e S A
MO %]V
V|6|Y|T|o
@aleNiole
» 1ng(¢|pa Dmeta—train) — 10g/ p(¢|Da 9)p(9|pmeta-train>d9 PLEICIY
S
~ log p(¢|D, 6*) + log p(6™ | Dmeta-train)
% argmaxlog P(¢|D, Dmeta-train) ~ arg max log p(¢|D, 0%)
=  What meta learning cares is the learning of ® from D (and implicitly from D__.. .....)
=  What makes meta learning challenging is the learning of optimal ©* from D, ... 1 ain:

[ 0* = arg meaxlogp(@ﬂ?meta_train) ]
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V. Person ID:
8 “Brad Pitt”

. . * \
=| Meta training: | 0* = arg max log p(0| Dimeta-train) Drnetatrain = {D1,...,Dp}

A Quick Example

= Meta testing: ¢ = argmgxlogp(qb\@,ﬁ*) D = {(x1, yl) (Tk, yr)}

A7 K f:.

D; = {(z}.4d).. .. (e} ) @“AQM

ts < — [11 OI 0]?
[0, 1, 0]?
[0, 0, 1]?

meta-training

Y
fb
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A Quick Example (cont’d)

® Meta training: 0* = arg max log p(0|Dmeta-train) Drnetatrain = {D1,...,Dp}

= | Meta testing:| ¢* = arg mgxlogp(cbﬂ?, 0) D={(z1,91),..-, (K, yx)}

meta-testing ﬁ;g P‘

~— test label

[0, 0, 1]

X r
| ’ l \t t input %
D estinpu ‘2 |

v" Key Idea:
The condition/mechanism of meta-training and meta-testing must match.
In other words, meta learning is to learn the mechanism, not to fit the data/labels.
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Meta-Learning Terminology & Comments

meta-learning: 0* = arg max log p(0|Dreta-train)

support (set)

k
query (set) /Tas T{ 'D;ES {(l'layl) (ﬁ,ym

@ﬁ D,

F“r;\

meta-testing

D={(x1,v1),---, (T, yx)}

Novel classes

5-way 1-shot

' Meta testing: adaptation: ¢* = arg mgxlogp(qb\@ 6*)

v" Remarks
- Meta learning: learn a N-way K-shot learning mechanism, not fitting data/labels
- The conditions (i.e., N-way K-shot) of meta-training and meta-testing must match.

- Question: Remarks on N & K vs. performances? .



A Closely Related Yet Different Task: —
. ° Taski+1 Train 6 G A Test ‘ “:
Multi-Task Learning e e
Testing Task Train i{?, -;;'E.—H Test é‘;ﬁ E

* Meta Learning

m Meta training: 6* = arg max log p(0|Dieta-train) Dietatrain = {P1,---,Dn}

= Meta testing: ¢ = arg mgxlogp(qu, 0*) D={(z1,y1),-- > (Tr>Yr)}

* Multi-Task Learning
* Learn model with parameter ©* that simultaneously soIves multiple tasks

n
* .
0" = arg max Z log p(0|D:) Face ID Age Expression

1=1
* Can be viewed as a special case where %) (@) Q%)
¢i =0 (i.e., fo(D;) =0) ¥ @ Y 4
-

. Learning
Algorithm

¢ § %

Tom Cruise 57 Smile



What to Cover Today...

* Meta-Learning
* Meta-Learning for Few-Shot Learning
e Parametric vs. Non-Parametric Approaches

Meta-Training Stage

Base class data

“a corgi wearing a bow tie and a birthday hat™

Feature
TAUEEET ol i
1

x, - cowo—y

Meta-Testing Stage

Novel class data Fixed @
(Few)

Feature .
extractor Classifier

1
; . 1
1

X, cow.r ¥
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Support set Queryset

Y it

h Cat(+) Dog() Cat(+) Dog(-)
Training Tasks
Approaches o |
Task i+1 rain Test \
T \Agw orange w‘ ot
* Two Ways to View Meta Learning Testing Task nan | &% g st |0
Bike (+)  Car(] Bike (+)  Car(+)

* Probabilistic View (e.g., optimization-based)

» Extract prior info from a set of (meta training) tasks,
allowing efficient learning of a new task (i.e., meta-testing)

* Learning a new task uses this prior and (small) training set
to infer most likely posterior model parameters

— Easy to understand meta learning algorithms

53



Approach #1: Optimization-Based Approach

* Model-Agnostic Meta-Learning (MAML)*
e Key idea:

* Train over many tasks (with a small amount of data & few gradient steps),
so that the learned model parameter would generalize to novel tasks

* Learning to initialize/fine-tune
* Meta-Learner ® - 0O,:

* Learn a parameter initialization ©, of model
that transfers/generalizes to novel tasks well.

* Thatis, learn model ©, which can be fine-tuned by novel tasks efficiently/effectively.

. Support set i ' Query set

Taski  Train i‘ z I I'Q'J Test

Taski+1  Train 'l 6 | z I‘ Test
: = P~ |
L L Train .@fg Test | @) VO optimize model parameter 6 so that
it can quickly adapt to new tasks

*Finn, Abbeel, Levine, ICML 2017 54

— meta-learning
---- learning/adaptation

9{+1 Lf]‘i+1(f9.’ )

i+1

Training Tasks ]




MAML

Loss Function:

N
A ["(6™): loss of task n on the query set of task n

n=1 6™: model learned from the support set of task n

Network - 2
SHwor 0) Update — 0" — Update — 0
Structure Init .
| ! Y
7o 7o g
Learning Algorithm T T
Compute Compute
B —
Gradient Gradient

p 3 1.133.. gl/-—

Support/Query
Sets of Task 2

Focus on the learning of
the initialization parameter )

Support/Query
Sets of Task 1




MAML doesn’t care
how model 8° performs on each task.

e lllustration of MAML

N It only cares how model 6™ performs for task n
: 0
0N nenn when starting from a properly learned 6.
L(Q ) _ 2 l (0 ) In other words, a good #° matters!
n=1
[* (Loss of
task 1)

[ (Loss of
task 2)

Small 12(62)

{
-

0?2 Parameter

9o
Small [1(61) &

Slide credit: H.-Y. Lee 56



* Comparison: o Determine the best 8" for all existing tasks
Model Pre-Training or

Multi-Task Learning However, no guarantee that 6'is preferable
N for learning good 6™ for task n.
L(QO) — z ln(QO) Again, a good 6° really matters!
n=1
- [* (Loss of
l (f ) task 1) [ (Loss of
task 2)

Model
Parameter

Slide credit: H.-Y. Lee 57



MAML

e Remarks

* Train a good initialized parameter set @ (i.e., 8°) for quick adaptation/generalization

* Meta-training:
N

L) = ) (™)

n=1
¢« p—nVyL(p)
* Meta-testing (for adaptation):

0=¢p—eVyl(h)

Note that one or multiple updates

can be performed during meta-testing.

Supportset

Cat l*l

Taski+1|  Train 6

Training Tasks ]

Testing Task

| Bl 4}

é
Network | d) U date
Structure ||nit 1_’ p
9
Learning t
Algorithm Compute
(Function F) Gra(ilent
Only focus on 7
initialization parameter Training

4) _ Data :

Task Train i é‘

Dog ()

—

3
Test ‘ ).
-l

| Apple(s) Orangel).

—~
Train ‘WD E
—

Carl)

Query set

Gt Dogl)

—
|

| Apple (+) Orange (-)

BT
Test ﬂ )

Csike(y)  Car()
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Meta-Training in MAML

@: initial model parameters

0: model parameters updated via the support set

..................................... ék QD(_(p_n.V(pL((p)

) L= ) "6
o, (p) = ")
n=1

P+t ) )
................................. N ’9k+1 O0=p—c¢- V(pl(QD)

/
/o

> N
Pr+2 Oicea V(pL(‘p) = z V(pln(én)
n=1

| Supportset Query set

91(0)
¢4
ol(0)
alcez
oL(0)
i aCPi i

Task i Train

Training Tasks ]

Test

7,0 (8) =

Testing Task

(1)

(2)

(3)

(4)

(5)
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»{
\
\
Ok
Pr+1 k+1
......... oU6)
o 091
Y. o)
Orrr O+ 7,1 (6) = 30, (5)
al(0)
al(0) zal(é) 00, —— lao.
d; 00; 09¢;
First-order approximation:
If i # j, then: If i = j, then:
é:(p__g.al(w) 06— al(p) .0 aéj_l_g.al(q))
o 09; dp; dp;0p; dp; dp;0;
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@: initial model parameters
0: model parameters updated via the support set

01(6)] [01(6)
0, 00,
. |eu@®)| [ou(6) )
51 (0) = |5 | = |26, | = 7ot (©)
o1(6)| |au()
_a(pi_ _aéi_
N
VLgr+1 ,’
/T N N
Prro O ATOESNAUCOES WAL G
n=1 n=1

¥ |0 co-n-Ul)=¢ —n-7L0)|

Finn, Abbeel, Levine, “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” ICML 2017 61



Recap: MAML

e Remarks

* Train a good initialized parameter set @ (i.e., 8°) for quick adaptation/generalization

* Meta-training:
N

L) = ) (™)

n=1
¢« p—nVyL(p)
* Meta-testing (for adaptation):

0=¢p—eVyl(h)

Note that one or multiple updates

can be performed during meta-testing.

Supportset Query set
Taski Train :i é
_ Cat(+) Dog() | | | Cat(+) Dogl(:)

Training Tasks ]

—
|

Taski+1  Train 6 Test ‘ ‘:
 Apple (+) Orange () Apple(s) Orange ()
L = o) r
Testing Task Train WD " Tk ﬂ v@
—
| Bikel)  Carf) Bike(+)  Car(-)
é
Network | d) U date
Structure |nit 1_’ p
9
Learning T
Algorithm Com;?ute
(Function F) Gra(ilent
Only focus on :
initialization parameter Training
(i) _ Data 62




Support set Queryset

o o P <R
Cat(+) Dogld) Cat(+) Dog(-)
A p p ro a C h e S Training Tasks . ‘ e ‘ \
| Apple(+) Orange (- el .:m
* Two Ways to View Meta Learning Testing ask wan | @ E rest |60

Bike (+) Car(-) Bike (+) Car ()

* Mechanistic View (e.g., metric-learning based)

* Meta training: A learning model (e.g., DNN) reads in a meta-dataset
which consists of many datasets, each for a different task

* Meta-testing: the model observes new data points (for a novel task)
and make prediction accordingly

— Easy to implement meta learning algorithms
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Approach #2: Non-Parametric Approach

e Can models learn to compare?

e E.g., Siamese Network
* Learn a network to determine whether a pair of images are of the same category.

Input Hidden Distance Output
layer layer layer layer

Koch et al., Siamese Neural Networks for One-Shot Image Recognition, ICML WS 2015 64



Learn to Compare (cont’d)

* Siamese Network (cont’d)

* Meta-training/testing: learn to match (i.e., 2-way image matching)

* Question: output label of the following example is 1 or 0?
(i.e., same ID or not)

SEPTEMBER 3

Input Hidden Distance Output
lﬂ}"e r layer layer 1 ayer
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Learn to Compare (cont’d)

» Siamese Network (cont’d)

* Meta-training/testing: learn to match (i.e., 2-way image matching)

* Question: output label of the following example is 1 or 0?
(i.e., same ID or not)

SEPTEMBER 3

Input Hidden Distance Output
layer layer layer layer

Xtest

* What did we learn from these examples?
* And, can we perform multi-way classification (beyond matching)?
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Learn to Compare...with the Representative Ones!

* Prototypical Networks
* Learn a model which properly describes data in terms of intra/inter-class info.
* Learn a prototype for each class, with data similarity/separation guarantees.

support set
S = {(x, y)Hea

Supportset Query set

Task i Train .

ﬁ/ T &
M}J  catls)  Dogl)

Training Tasks ]

Taski+1  Train | 6 ,-:r
Apple (+) Orange (-) ~ Apple (+) oulp_ﬁ
- “"\-\.-.r
Testing Task Train WQ . Test g‘r@ —
Bke()  Cart) Bike(s)  Car()

Snell et al., Prototypical Networks for Few-Shot Learning, NIPS 2017 67



* Prototypical Networks (cont’d)

* For DL version, the above embedding space is derived by a non-linear mapping f
and the representatives (or anchors) of each class is the mean feature vector c,.

/ Support set Query set
Taski | Train ﬁ/ "@' Teﬁ
CCat(+)  Dogh)

Training Tasks

Taski+1  Train ‘ Test
—

Testing Task Train W e Test d 0@

Cr = A Z fo(xi), where S, C S is the subset of support set S with class k
(Xiayi)esk

Snell et al., Prototypical Networks for Few-Shot Learning, NIPS 2017 68



Learn to Compare

* Matching Networks

* Inspired by the attention mechanism,
access an augmented memory containing useful info to solve the task of interest

* The authors proposed a weighted nearest-neighbor classifier,
with attention over a learned embedding from the support set S = {(x;, )} ,,
so that the label of the query X can be predicted.

c(.,.): cosine similarity

k
y = Z a(Z,xi)y; with a(@, z;) = e“U (2.9 Z;‘":l ecf(2).9(z;))
i=1 P

mp g
supportset S = DD
{Cxi vy wo
b
b,

query example X

Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016 69



* Matching Networks (cont’d)
* Full context embedding (FCE)
* Each element in S should not be embedded independently of other elements

g(x;) 2 g(S) as a bidirectional LSTM by considering the whole S as a sequence

* Also, S should be able to modify the way we embed X

f(x) 2 f(x,5) as an LSTM with read-attention over g(§): attLSTM(f' (%), g(S),K),
where f'(X) is the (fixed) CNN feature, and K is the number of unrolling steps

* Experiment results on minilmageNet

support set
S = {(x y) ¥y

o

Q. S

— . . S5-way Acc

= Model Matching Fn  Fine Tune I-shot  S-shot

o0

(=g} PIXELS Cosine N 23.0% 26.6%

o BASELINE CLASSIFIER Cosine N 36.6% 46.0%

a BASELINE CLASSIFIER Cosine Y 36.2% 52.2%

': BASELINE CLASSIFIER Softmax Y 38.4% 51.2%

g" MATCHING NETS (OURS) Cosine N 41.2% 56.2%

g MATCHING NETS (OURS) Cosine Y 42.4% 58.0%
MATCHING NETS (OURS) Cosine (FCE) N 44.2% 57.0%
MATCHING NETS (OURS) Cosine (FCE) Y 46.6% 60.0%

qguery example X
Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016 70



Learn to Compare

e Matching Networks (cont’d)

* Ifwehaveg = f,
the model turns into a Siamese network like architecture

* Also similar to prototypical network for one-shot learning

n
supportset S = h
k d o
{Cep yidtiza e
b
off*™ ¢

query example X

Vinyals et al., "Matching Networks for One Shot Learning," NIPS, 2016 71



Learn to Compare...with Self-Learned Metrics!

* Relation Network
* Metric-learning approaches typically focus on learning an embedding function
with a fixed metric (e.g., Euclidean distance, cosine similarity, ...)

* The authors proposed to train a Relation Network (RN) to explicitly learn a
transferrable deep distance metric comparing the relation between images

embedding module relation module

feature concatenation

compute relation score

support set A

S = {(x, ¥}y f N v
Xi = fgo(xi) r= gqb(c(f(p(xi)» f(p(f)))
X - fp(X)

C(fp (x1), fo (X))

query example X

Sung et al., "Learning to Compare: Relation Network for Few-Shot Learning," CVPR, 2018 72



Relation Networks (cont’d)

* Extension to zero-shot learning (if time permits):
* Instead of few-shot images, the support set contains a semantic embedding vector v,
(e.g., embedding of class label ) for each training class.

* One can use a heterogeneous embedding function gy
to embed the semantic embedding vectors, which relates the image data f (X;)

* E.g., Prototypical Network for zero-shot image classification:

b= S ) D = g0

(Xi,Y; ) ESE

| Sk|




Some Takeaways

for Existing Meta-Learning Approaches

Parametric-based

+ handles varying & large K well
+ structure lends well to out-of-
distribution tasks

- second-order optimization

Non-parametric based

+ simple
+ entirely feedforward
+ computationally fast & easy to optimize

- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Generally, well-tuned versions of each perform comparably on existing FSL benchmarks.
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What to Cover Today...

* Meta-Learning
* Meta-Learning for Few-Shot Learning
* Parametric vs. Non-Parametric Approaches
* Metric Learning vs. Data Hallucination

Meta-Training Stage

Base class data

“a corgi wearing a bow tie and a birthday hat™

Feature
extractori -z em=is]

Meta-Testing Stage

Novel class data Fixed
(Few) Feature .
extractor Classifier

’ N

X,L-.—-EC(-[W,;)T’

i
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A Super Brief Intro/Review for
Generative Adversarial Networks (GAN)

* Design of GAN
* Loss: Lgun(G,D) = Ellog(1— D (G(x)))] + E[log D(y)]

Realworld ———
images

S50

Discriminator . :
X
4 Fake
Generator ——— Sample \_/
a Backprop error to
update discriminator

weights

Latent random variable
[elele]

Goodfellow et al., Generative Adversarial Nets, NIPS, 2014 76



Learn to Augment...Data Hallucination for FSL (1/3)

e Data Hallucination by Conditional GAN

e Can we learn a model resulting in a desirable invariance space, which can be derived by
a conditional GAN in the source domain (Cp,se ), and apply it to the target domain (Cy,ovel)?

Cbase

Meta training Meta testing

Antoniou et al., "Data Augmentation Generative Adversarial Networks," ICLR Workshop, 2018 77



* Data Augmentation GAN

Data Provider

N ¥ ' Discriminator:
'True Image xi'l ITrue Image le D(Xi,Xj) =» Real pair

D(x;,X,) =» Fake pair
(Left) Generator z, (Gaussian) Vg
r; = Enc(x;) L Question:
z; ~ N(0,I) e Encoder ; Why not verify X; and X,;?

X, = Dec(z;, 1; . .
g (zi,11) Real Distr. (Xl- x) ) i.e., why conditioned on x;?

E:ake Distr. (x| Xg)
Y
| Projectedz. | [ri Low Dim Repr| (1) prevent the generator
from simply output the

Discriminator i
original image X;

(2) to improve diversity
(aka. mode collapse)

Real/Fake

Discriminator Network 9 (1) or (2) or...?

Antoniou et al., "Data Augmentation Generative Adversarial Networks," ICLR Workshop, 2018 78



Learn to Augment...Data Hallucination for FSL (cont’d)

* Jointly Trained Hallucinator

* The hallucinated examples should be useful for classification tasks,
rather than just being diverse or realistic (that may fail to improve FSL performances).

* The authors proposed to train a conditional-GAN-based data hallucinator (G (x, z))
jointly with the meta-learning module (h) in an end-to-end manner.

Strain

Sampm’@ \

Noise z

—>

forward pass

I' Illllll -tj)

= = == =
back-propagation

Wang et al., Low-shot learning from imaginary data, CVPR 2018 79



Further Remarks:
A Closer Look at FSL (1/3)

* |dea

* Deeper backbones significantly reduce the gap across existing FSL methods.
(with decreased domain shifts between base and novel classes)

* Aslightly modified baseline method (baseline++)
surprisingly achieves competitive performance.

* Simple baselines (baseline and baseline++: trained on base and fine-tuned on novel)
outperform representative FSL methods when the domain shift grows larger.

Training stage Fine-tuning stage
Base class data Novel class data Fixed
(Many) Feature E— (Few) Feature
assi er 1 . p — -

Classifier

extractor CEEEITEC extractor °7F

:Cr('|w'ﬂ. _H ?

Basel |ne++

Cosine |mmd ¥
o(x1) dlstance !

W| wa, ..w.| € R4*¢
use cosine distances between the input feature and the
weight vector for each class to reduce intra-class variations

80
Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019



A Closer Look at FSL (2/3)

* Performance with deeper backbones

—— Baseline

F-AUDT)

For CUB, gaps among different methods diminish as the backbone gets deeper.

For mini-ImageNet, some meta-learning methods are even beaten by baselines with
a deeper backbone.

1-shot
o B 7
2z =
a3 o 14
OROH
= oo

—&— Baseline++

pE-19NS Y

CUB

90%
80%
70%

60%

MatchingNet
5-shot
55%
r// — 50%
45%
40%

F-AUOT)

g-ALO)

0T-13NsaY

BT-19N53Y

FE-19M 529y

F-AU0T)

ProtoMet

1-shot

777

g-AUD7)

OT-1=Ns=y

gr-19NsS3Y

—— MAML

FE-19NSoY

Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019

80%

~&— RelationNet
mini-ImageNet

5-shot

l

)

{-ALIOT)

0T-12Ns2y

BT-19NSaY

81

FE-19N 59y



A Closer Look at FSL (3/3)

* Performance with domain shifts (using ResNet-18)

» Existing FSL methods fail to address large domain shifts (e.g., mini-ImageNet - CUB)
and are inferior to the baseline methods.

e This highlights the importance of learning to adapt to domain differences in FSL.

B Baseline M Baseline++ M MatchingNet ™ ProtoNet MMAML M RelationNet

minilmageNet  minilmageNet -> CUB

Small <& » Large
Domain Difference

90%

80%

70%

60%

&

509

=

40%

82
Chen et al., A Closer Look at Few-shot Classification, ICLR, 2019



What to Cover Today...

* Meta-Learning

e Advanced Issues in Learning from Small Data

* Few-Shot Image Segmentation

* Few-Shot Object Detection (next lecture) Meta-Training Stage
Base class data

* Anomaly Detection (next lecture)

Feature

extractor Classifier

x, - cowo—y

Meta-Testing Stage

Novel class data Fixed ’
(Few) Feature . @
. extractor Classifier

1
; . 1
1

X, cow.r ¥

“a corgi wearing a bow tie and a birthday hat™



Semantic Segmentation

* Goal
* Assign a class label to each pixel in the input image

* Don’t differentiate instances, only care about pixels
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Few-Shot Segmentation

Images of base categories are with pixel-wise ground truth labels,
while those of novel classes them are with limited amounts of GT pixel-wise labels.

A shared CNN backbone produces feature maps for both support and query images.
Prototypes for each class is obtained by masked pooling from support feature maps.
Query feature maps are then compared with the prototypes in a pixel-by-pixel fashion.

Typically, cosine similarity is adopted for pixel-wise feature comparison.

Pooled features

== \l" B

Masked

Pooling Query mask

prediction

Support mask

Cosine
Similarity

Query Feature maps

Query image

85



	Deep Learning for Computer Vision��Fall 2022
	What to Cover Today…
	Transformer
	The Decoder in Transformer 
	The Decoder in Transformer 
	Vision Transformer
	Query-Key-Value Attention in ViT
	Transformer for Semantic Segmentation
	Transformer for Semantic Segmentation
	What to Cover Today…
	A picture is worth a thousand words…�Is it that simple?
	Vision + Language → ?
	Image Captioning
	Image Captioning (cont’d)
	Image Captioning in the Wild
	Beyond Image Captioning:�Unified Vision & Language Model
	Semantics-Aligned Pre-training for V+L Tasks
	Semantics-Aligned Pre-training for V+L Tasks (cont’d)
	Semantics-Aligned Pre-training for V+L Tasks (cont’d)
	投影片編號 20
	Novel Object Captioning
	Recent Work on Novel Object Captioning
	Novel Object Captioning (cont’d)
	Novel Object Captioning (cont’d)
	Image Change Captioning
	Image Change Captioning
	Image Manipulation
	投影片編號 28
	Challenges in Text-Guided Image Manipulation
	Text-Guided Image Manipulation (cont’d)
	Selected Work on Text-Guided Image Manipulation 
	Composed Image Retrieval
	Composed Image Retrieval �with Pre-trained V&L Models
	Retrieval with Text-Explicit Matching & Implicit Similarity
	投影片編號 35
	投影片編號 36
	What to Cover Today…
	Meta Learning 元學習
	What If Only Limited Amount of Data Available?
	Selected Applications of �Few-Shot Learning in Computer Vision
	Selected Applications of �Few-Shot Learning in Computer Vision
	Meta Learning = Learning to Learn
	Question:
	Some ML Backgrounds (if time permits…)
	投影片編號 45
	What Meta Learning Solves:
	What Meta Learning Solves:
	A Quick Example
	A Quick Example (cont’d)
	Meta-Learning Terminology & Comments
	A Closely Related Yet Different Task: �Multi-Task Learning
	What to Cover Today…
	Approaches
	Approach #1: Optimization-Based Approach
	MAML
	投影片編號 56
	投影片編號 57
	MAML
	投影片編號 59
	投影片編號 60
	投影片編號 61
	Recap: MAML
	Approaches
	Approach #2: Non-Parametric Approach
	Learn to Compare (cont’d)
	Learn to Compare (cont’d)
	Learn to Compare…with the Representative Ones!
	投影片編號 68
	Learn to Compare
	投影片編號 70
	Learn to Compare
	Learn to Compare…with Self-Learned Metrics!
	Relation Networks (cont’d)
	Some Takeaways �for Existing Meta-Learning Approaches
	What to Cover Today…
	A Super Brief Intro/Review for�Generative Adversarial Networks (GAN)
	Learn to Augment…Data Hallucination for FSL (1/3)
	投影片編號 78
	Learn to Augment…Data Hallucination for FSL (cont’d)
	Further Remarks:�A Closer Look at FSL (1/3)
	A Closer Look at FSL (2/3)
	A Closer Look at FSL (3/3)
	What to Cover Today…
	Semantic Segmentation
	Few-Shot Segmentation

