Deep Learning for Computer Vision

Fall 2022

https://cool.ntu.edu.tw/courses/189345 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2022/11/1

What to Cover Today...

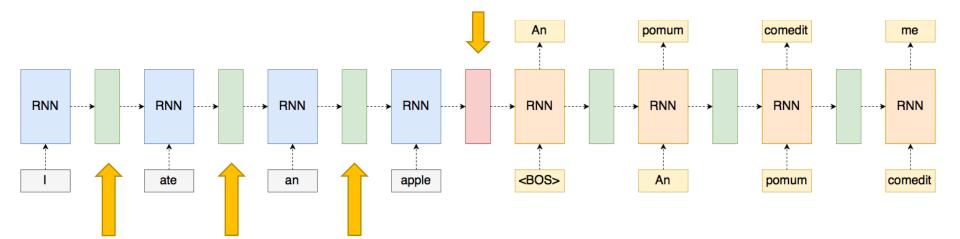
- Recurrent Neural Network & Transformer
 - Attention in RNN
 - Attention is All You Need: Transformer
 - Transformer for Visual Analysis
 - Visual Classification
 - Semantic Segmentation & More
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

"a corgi wearing a bow tie and a birthday hat"

Teddy bears shopping for groceries in the style of ukiyo-e

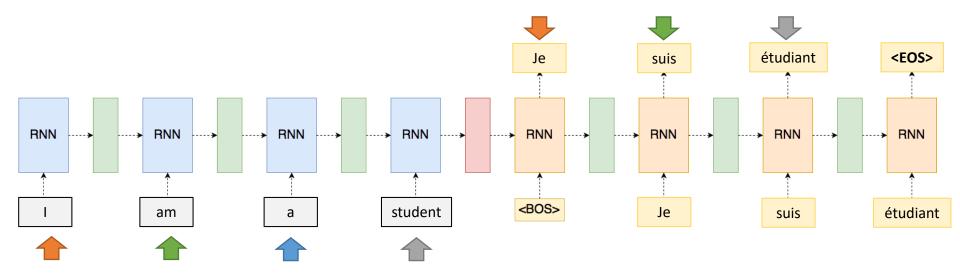
What's the Potential Problem of RNN?

- Each hidden state vector extracts/carries information across time steps (some might be diluted downstream).
- However, information of the entire input sequence is embedded into a single hidden state vector.



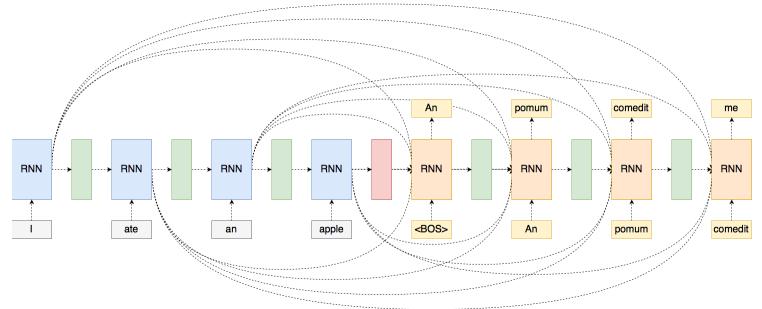
What's the Potential Problem? (cont'd)

- Outputs at different time steps have particular meanings.
- However, synchrony between input and output seqs is not required.



What's the Potential Problem? (cont'd)

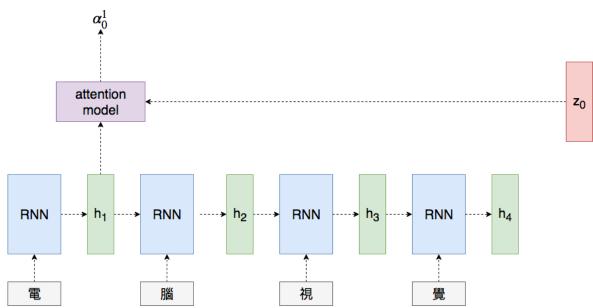
• Connecting every hidden state between encoder and decoder?



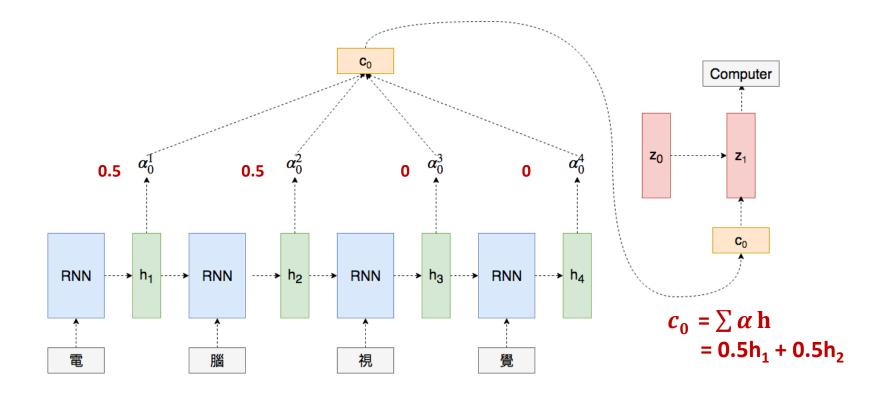
- Infeasible!
 - Both inputs and outputs are with varying sizes.
 - Overparameterized

Solution #1: Attention Model

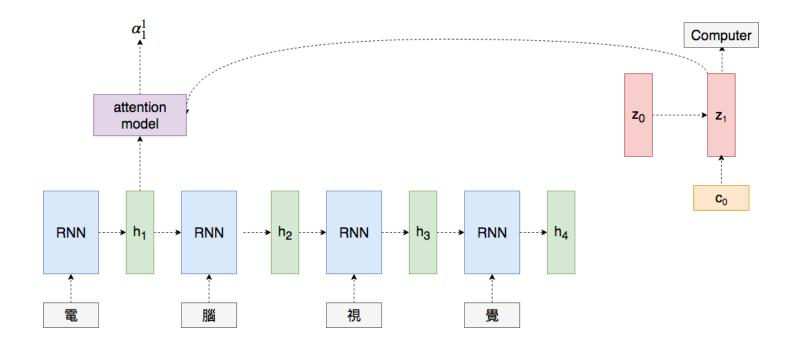
- What should the attention model be?
 - A NN whose inputs are z and h while output is a scalar α, indicating the similarity between z and h.
- Most attention models are jointly learned with other parts of a network (e.g., classifier, regressor, etc.)
 - Will see some examples later.



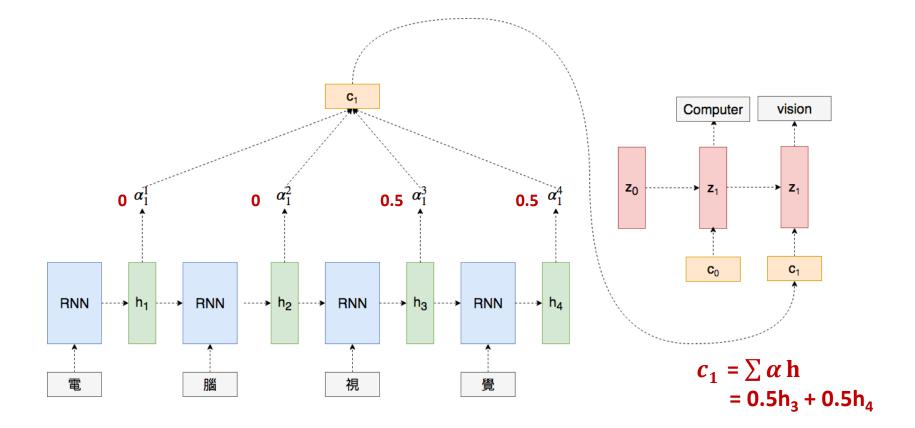
Solution #1: Attention Model



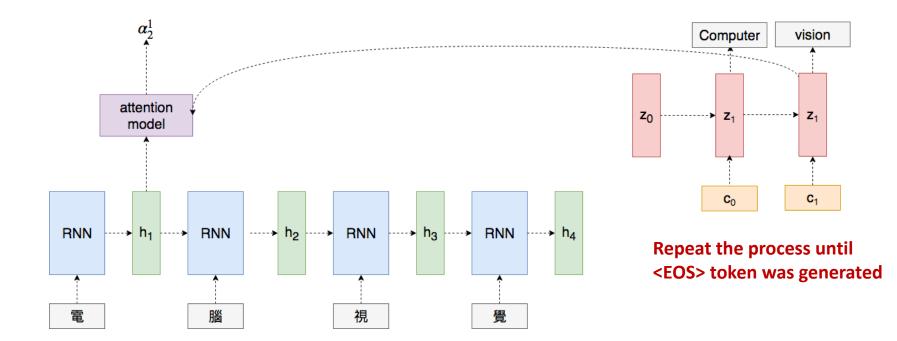
Solution: Attention Model



Solution: Attention Model



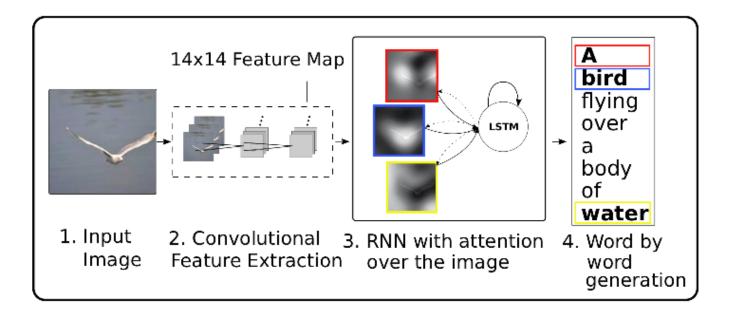
Solution: Attention Model



Selected Attention Models for Image-Based Applications

- Image Captioning
 - Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML '15
- Visual Question Answering
 - Zhu et al, "Visual7W: Grounded Question Answering in Images", CVPR '16
- Image Classification
 - Mnih et al, "Recurrent Models of Visual Attention", NIPS '14

• RNN focuses visual attention at different spatial locations when generating corresponding words during captioning.



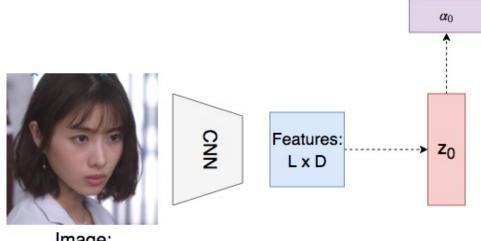
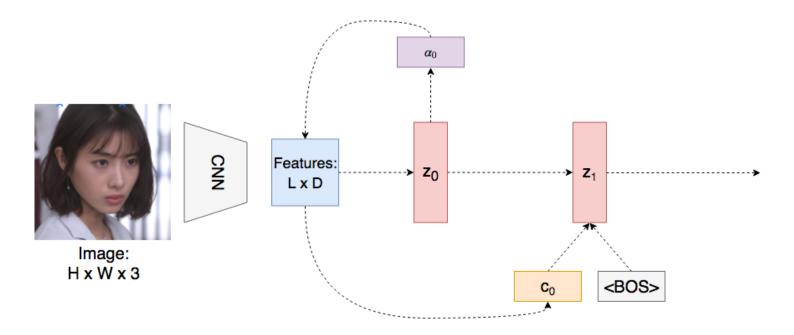
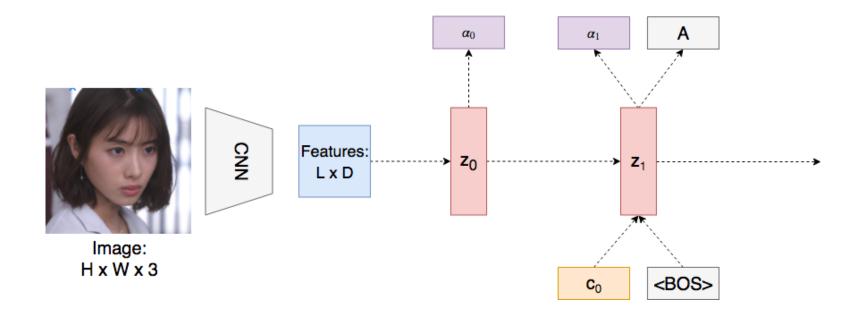


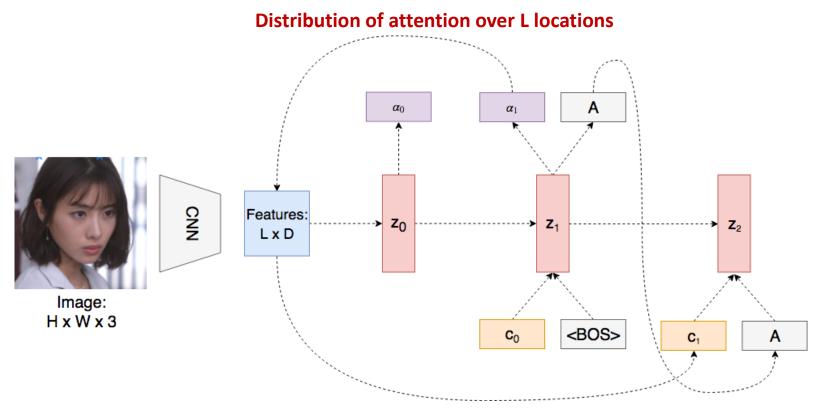
Image: H x W x 3

Distribution of attention over L locations

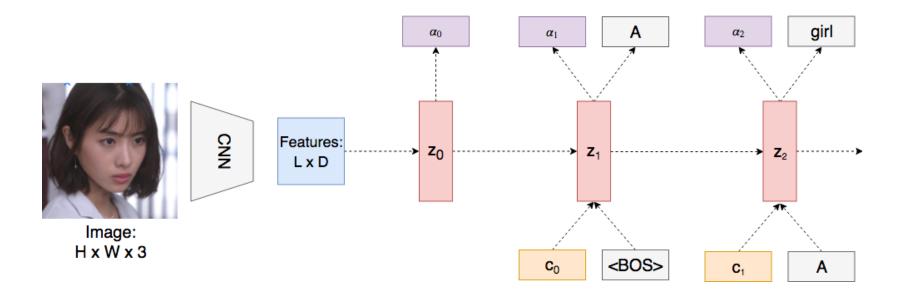


Weighted combination of features



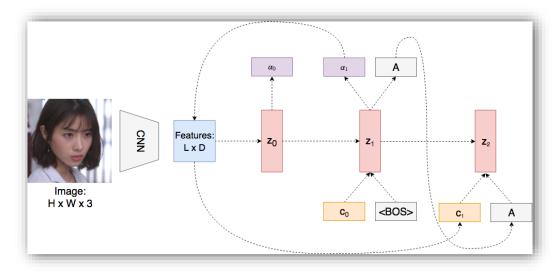


Weighted combination of features



Repeat the process until <EOS> token was generated

Visualization



A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Selected Attention Models for Image-Based Applications

- Image Captioning
 - Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML '15
- Visual Question Answering
 - Zhu et al, "Visual7W: Grounded Question Answering in Images", CVPR '16
- Image Classification
 - Mnih et al, "Recurrent Models of Visual Attention", NIPS '14

Visual Question Answering

• Examples of multiple-choice QA & pointing QA

- Q: What endangered animal is featured on the truck?
- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.

- Q: Where will the driver go if turning right?
- A: Onto 24 3/4 Rd.
- A: Onto 25 3/4 Rd.
- A: Onto 23 3/4 Rd.
- A: Onto Main Street.

- Q: When was the picture taken?
- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church service.

- Q: Who is under the umbrella?
- A: Two women.A: A child.A: An old man.A: A husband and a wife.

Q: Which pillow is farther from the window?

Q: Which step leads to the tub?

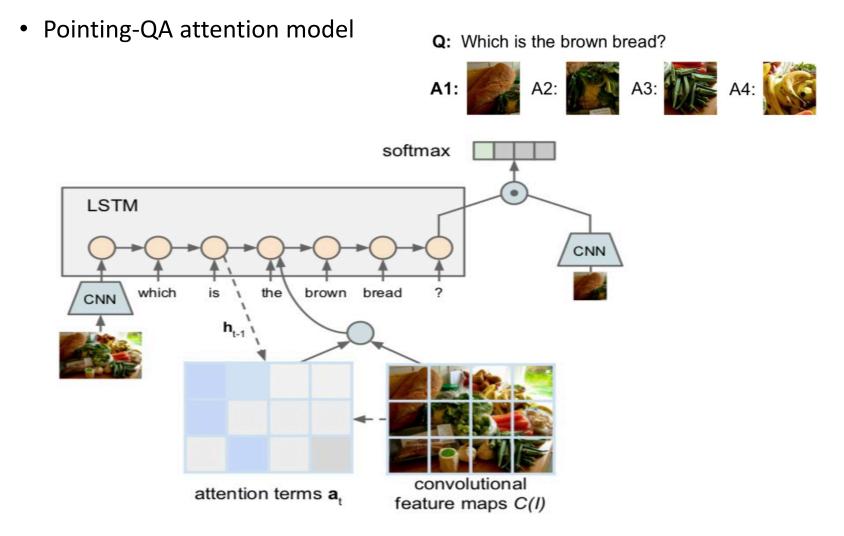
Q: Which is the small computer in the corner?

Q: Which item is used to cut items?

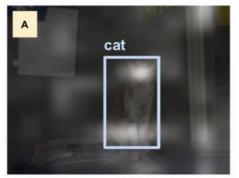
Q: Which doughnut has multicolored sprinkles?

Q: Which man is wearing the red tie?

Visual Question Answering with Attention



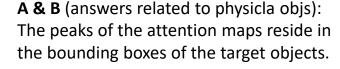
Visual Question Answering with Attention (cont'd)



What kind of animal is in the photo? A cat.

Why is the person holding a knife?

To cut the cake with.



Where are the carrots? At the top.

How many people are there? Three.

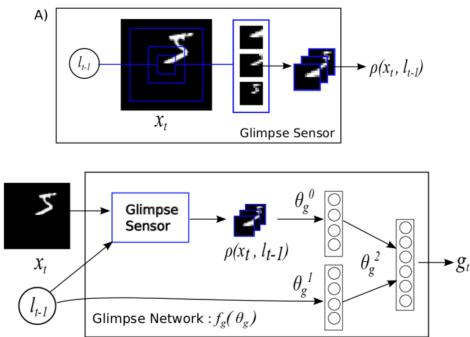
C & D (answers w/ non-physical objs): The bottom two examples show QA pairs with answers not explicitly containing objects. The attention heat maps are scattered around the image grids.

Selected Attention Models for Image-Based Applications

- Image Captioning
 - Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML '15
- Visual Question Answering
 - Zhu et al, "Visual7W: Grounded Question Answering in Images", CVPR '16
- Image Classification
 - Mnih et al, "Recurrent Models of Visual Attention", NIPS '14

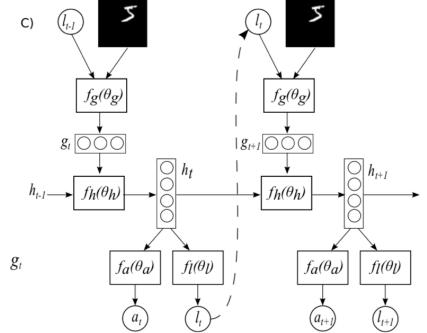
Glimpse Sensor & Glimpse Network

Glimpse sensor: extracts a retina-like representation centered at I_{t-1} that contains multiple resolution patches.



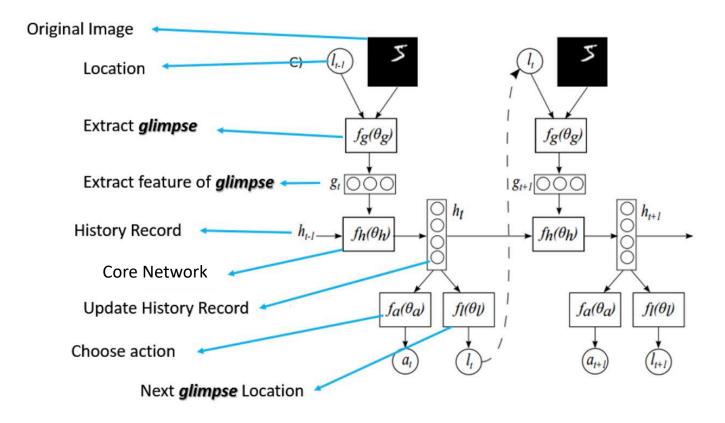
B)

Glimpse network: given location I_{t-1} and image x_t , use the glimpse sensor to extract retina representation, which is mapped into a joint hidden space.



RNN-based model architecture: the core network takes the glimpse representation as input with the hidden state vector from the prevision step, and outputs the new hidden state resulting in **location** and **action** networks to predict the next location to attend and the associated action.

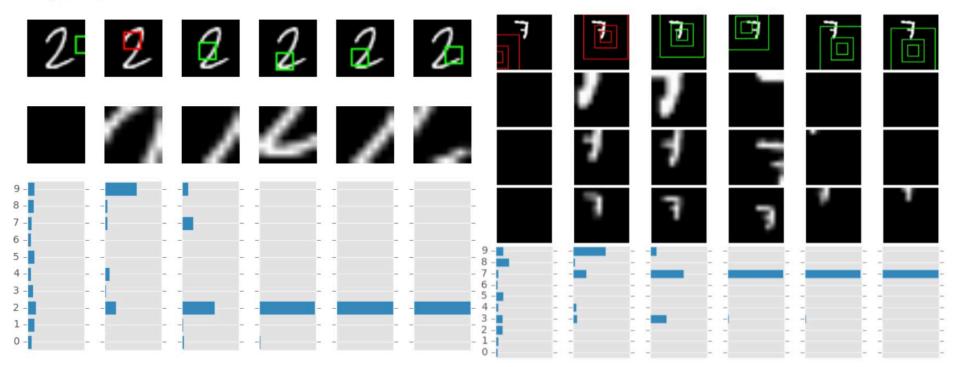
Architecture: RNN with Attention Models



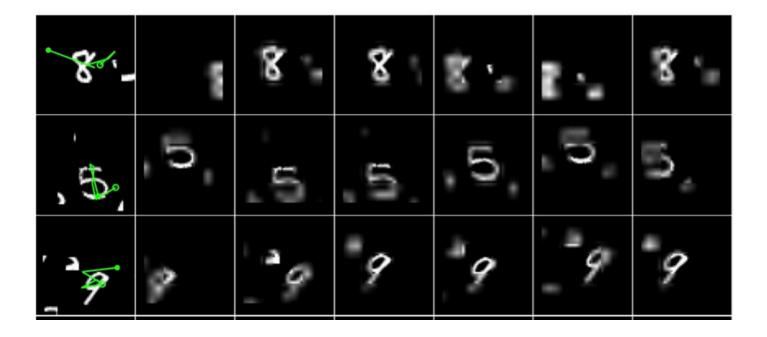
Example Results

Original MNIST

Translated MNIST



Example: Actual Glimpse Path



What to Cover Today...

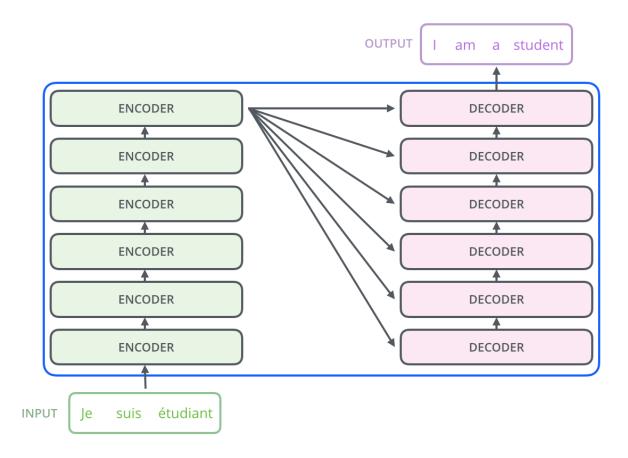
- Recurrent Neural Network & Transformer
 - Attention in RNN
 - Attention is All You Need: Transformer
 - Transformer for Visual Analysis
 - Visual Classification
 - Semantic Segmentation & More
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

"a corgi wearing a bow tie and a birthday hat"

Teddy bears shopping for groceries in the style of ukiyo-e

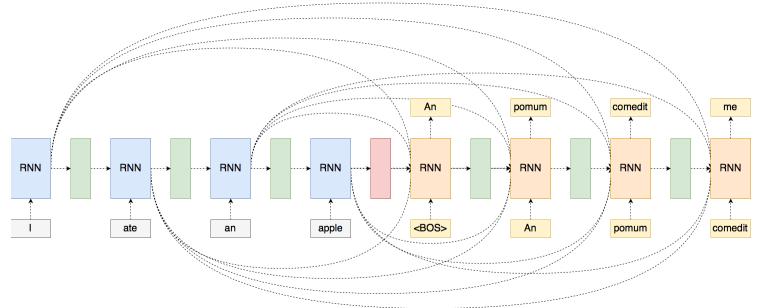
RNN with Attention is Good, But..

- Attention in a pre-defined sequential order
- Information loss due to long sequences...



RNN with Attention is Good, But..

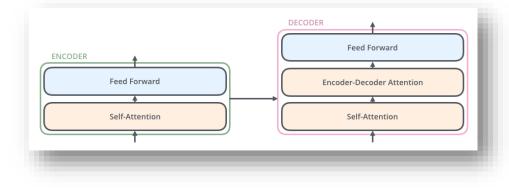
• Connecting every hidden state between encoder and decoder?

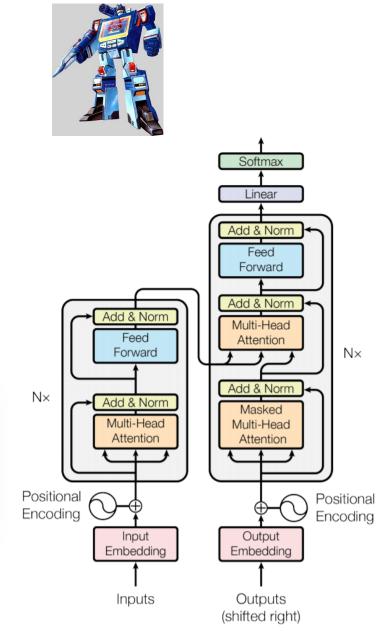


- Infeasible!
 - Both inputs and outputs are with varying sizes.
 - Overparameterized

Solution #2: Transformer

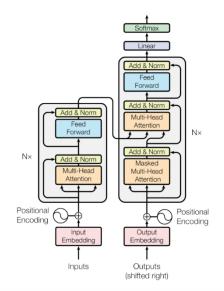
- "Attention is all you need", NeurIPS 2017
- More details available at: http://jalammar.github.io/illustrated-transformer/

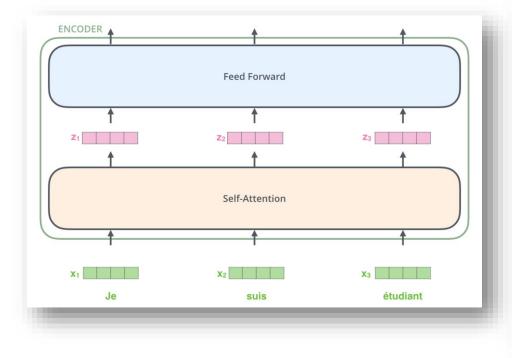


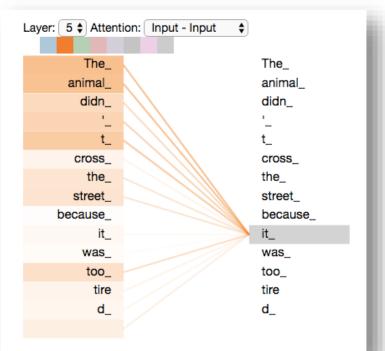


Transformer

- "Attention is all you need", NeurIPS 2017
- Self-attention for text translation

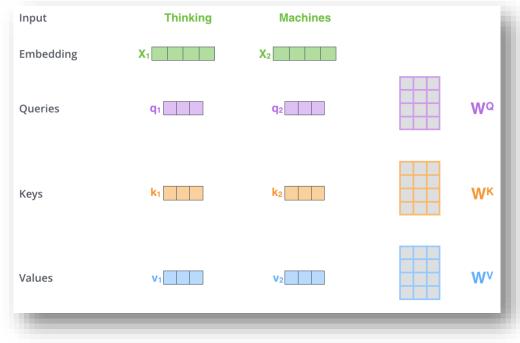


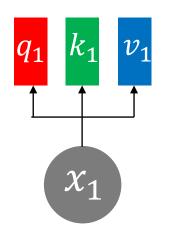


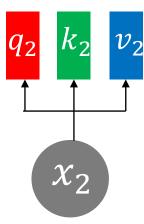


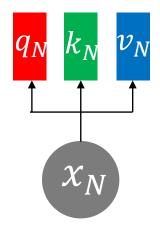
Self-Attention (1/5)

- Query q, key k, value v vectors are learned from each input x
 - $q_i = W^Q x_i$ $k_i = W^K x_i$ $v_i = W^V x_i$





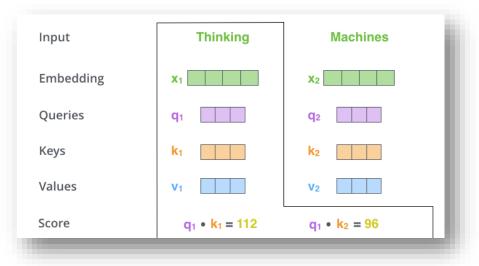


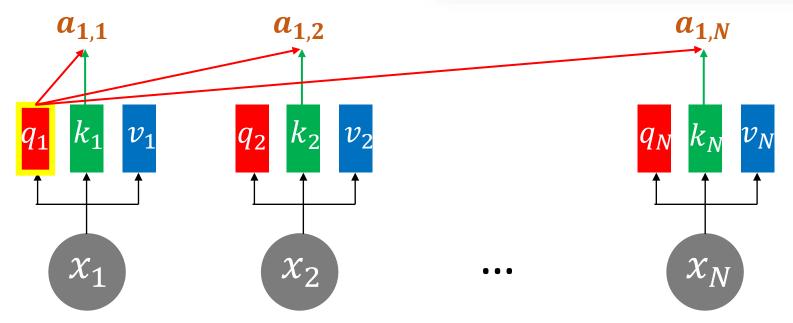


Self-Attention (2/5)

 Relation between each input is modeled by inner-product of query *q* and key *k*.

$$a_{1,i} = \frac{q_1 \cdot k_i}{\sqrt{d}}$$
, where $a \in R, q, k \in R^d$





Self-Attention (3/5)

• SoftMax is applied:

 $\widehat{a}_{1,1}$

*a*_{1,1}

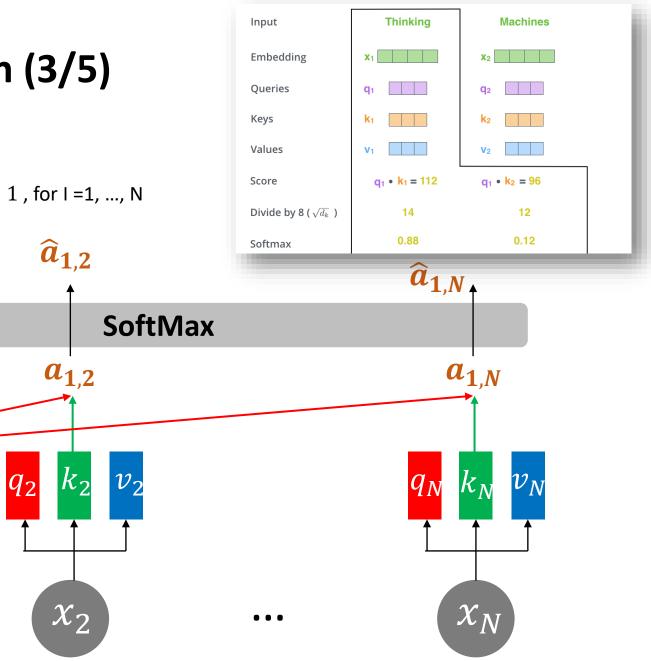
 k_1

 x_1

 q_1

 v_1

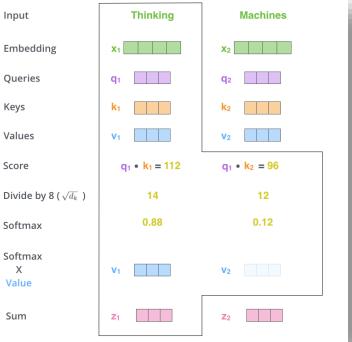
$$0 \leq \hat{a}_i = e^{a_i} / \sum_j^{\mathrm{N}} e^{a_j} \leq 1$$
 , for I =1, ..., N

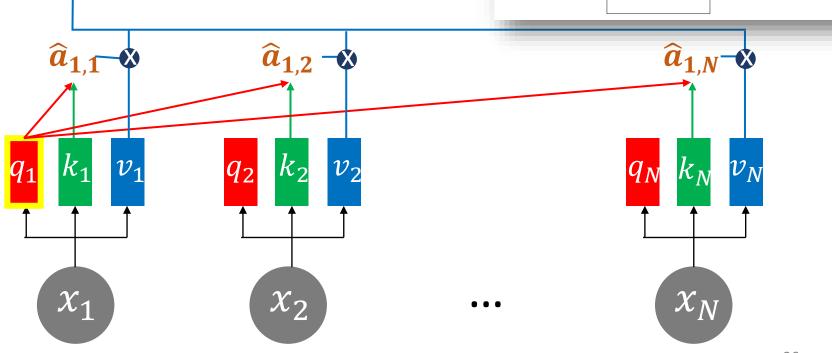


Self-Attention (4/5)

 y_1

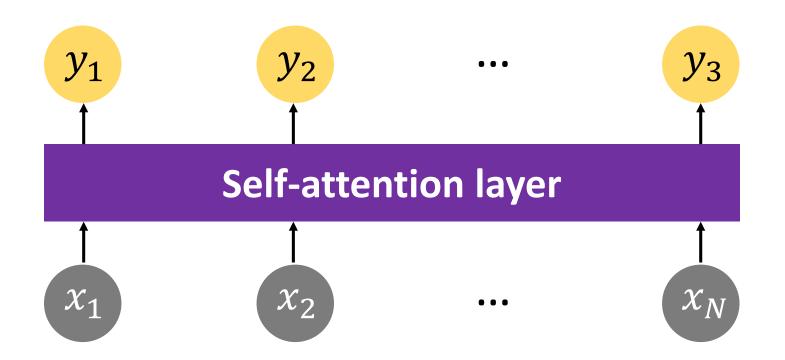
• Value vectors \mathbf{v} are aggregated with attention weight \hat{a} , i.e., $y_1 = \sum_i^N \hat{a}_i \cdot v_i$





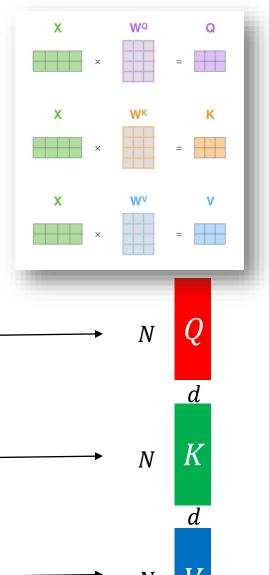
Self-Attention (5/5)

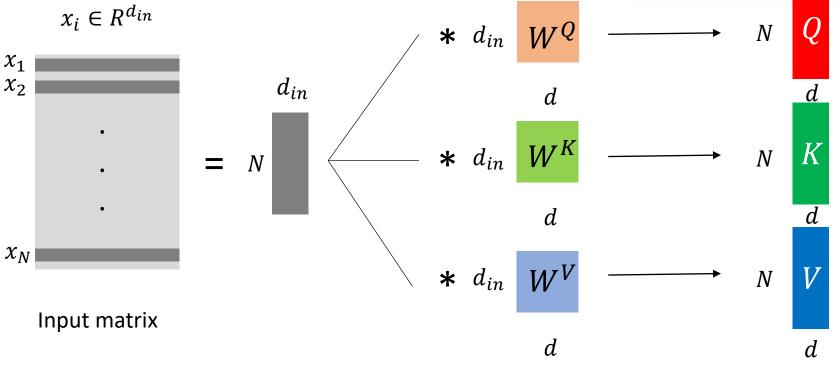
- All y_i can be computed in parallel
- y_i considers $x_1 \sim x_N$, modeling long-distance dependencies.
- Global feature can be obtained by average-pooling over $y_1 \sim y_N$



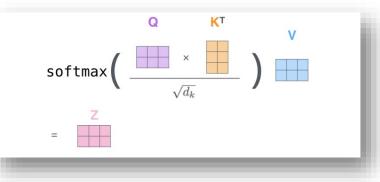
Self-Attention: Implementation

- Input sequence can be represented as a N x d_{in} matrix
- * denotes matrix multiplication

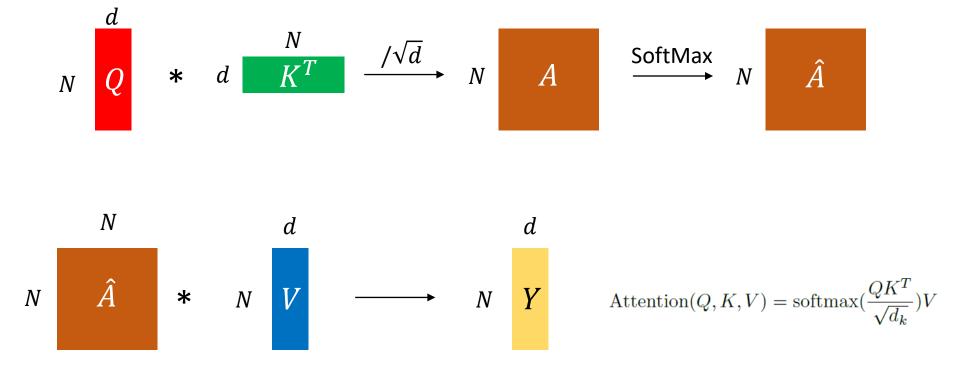




Self-Attention: Implementation



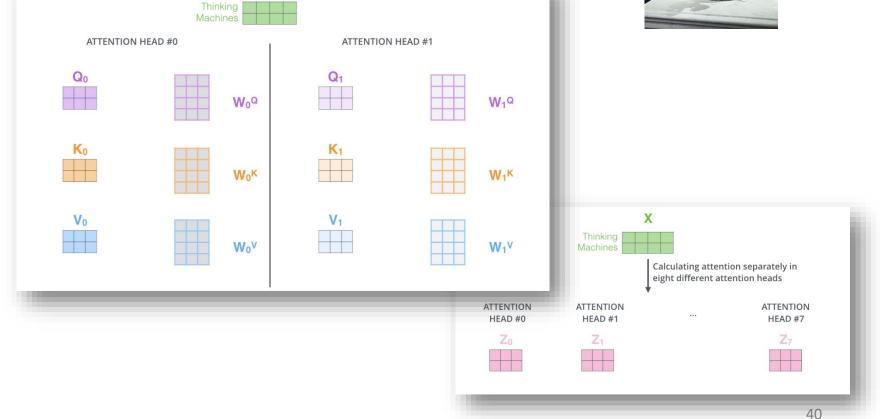
- Output matrix Y
- All operations are matrix multiplication, can be parallelized on GPU.



Multi-Head Self-Attention (1/4)

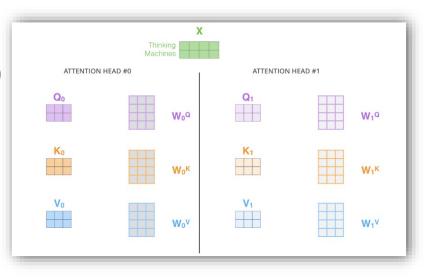
• Perform self-attention at different subspaces, implying attention over different input feature types (e.g., representations, modalities, positions, etc.)

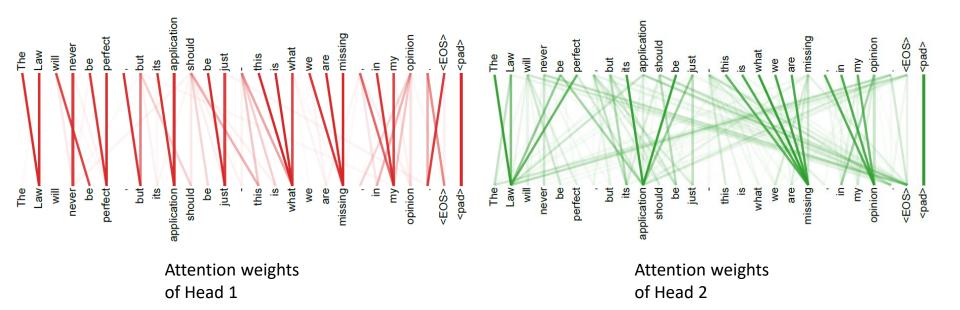
X



Multi-Head Self-Attention (2/4)

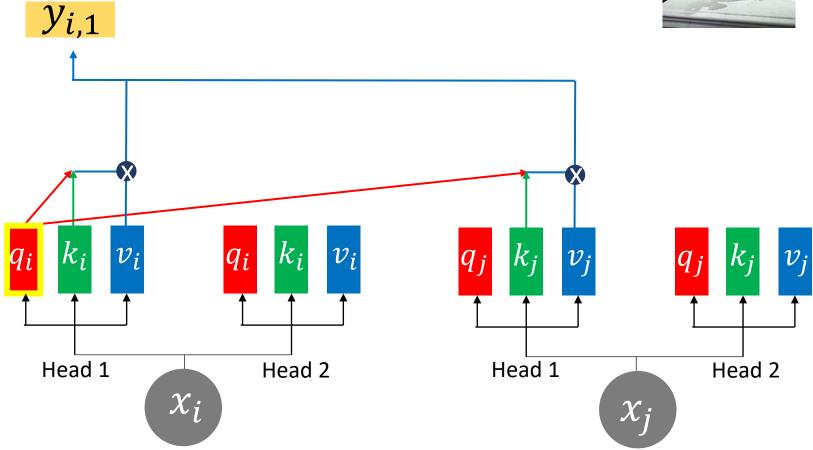
- Perform self-attention at different subspaces, implying attention over different input types
- See example below





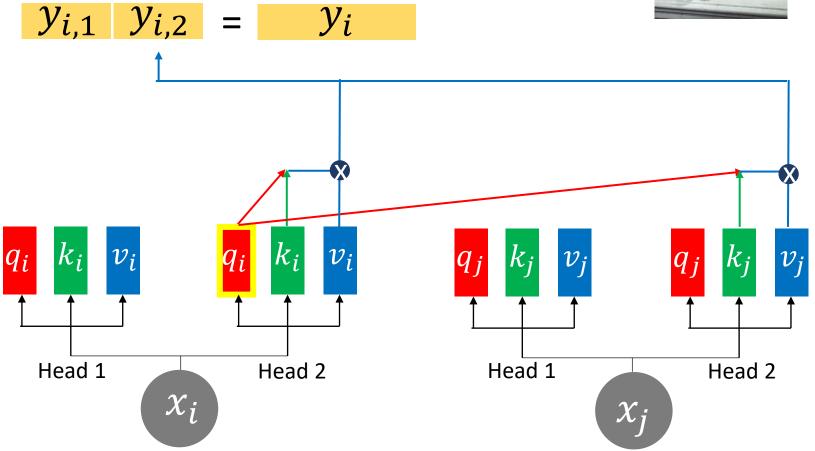
Multi-Head Self-Attention (3/4)

• A 2-head example, output of two heads are concatenated.



Multi-Head Self-Attention (4/4)

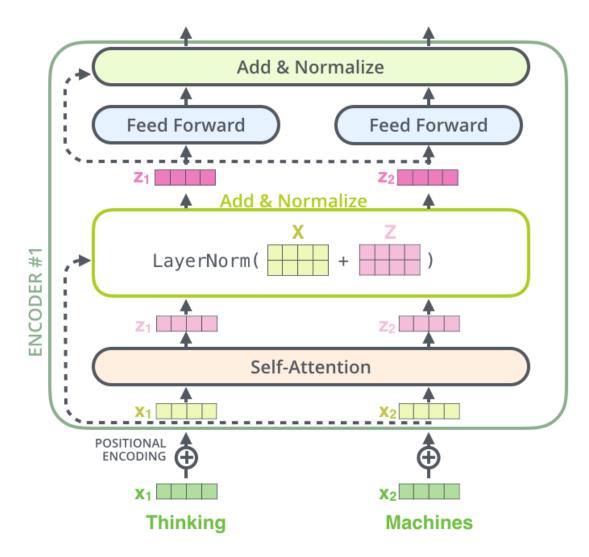
• A 2-head example, output of two heads are concatenated.



Batch Norm Layer Norm Batch Norm Batch

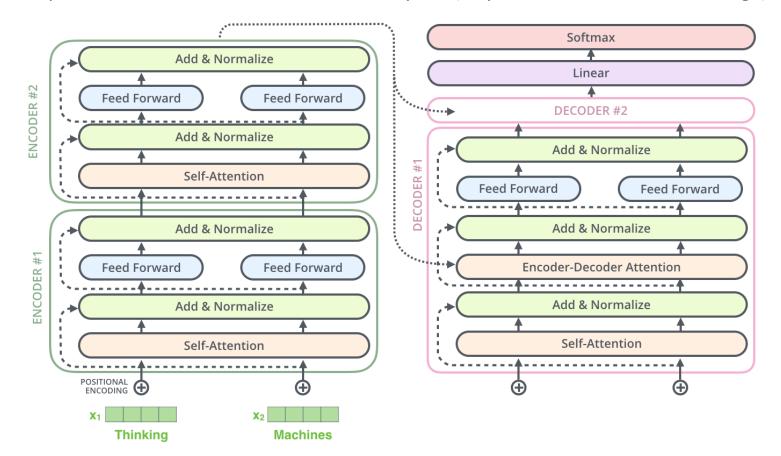
The Residuals

• A residual connection followed by layer normalization



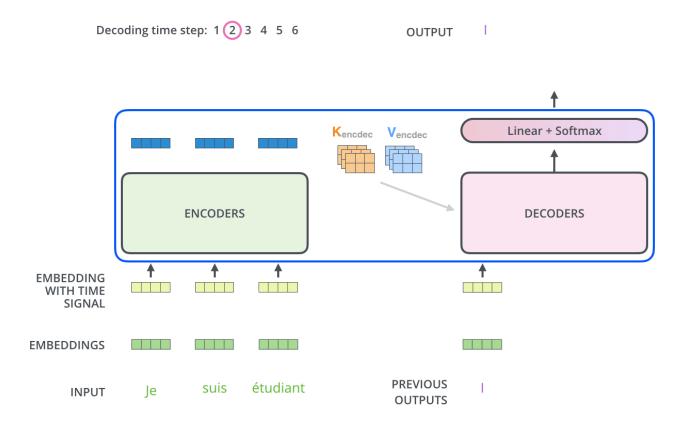
The Decoder in Transformer

 Design similar to that of encoder, except the 1st decoder takes additional inputs (of predicted word embeddings).



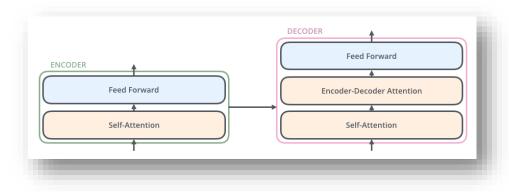
The Decoder in Transformer

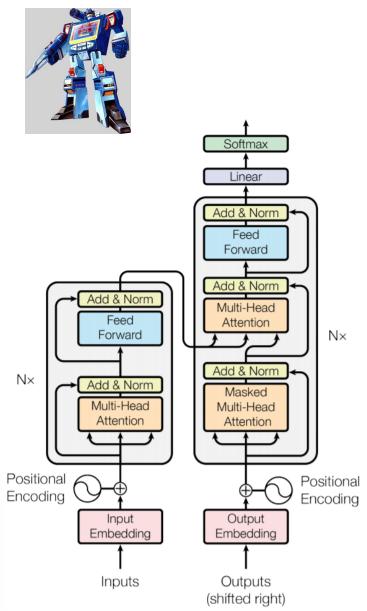
 Design similar to that of encoder, except the 1st decoder takes additional inputs (of predicted word embeddings).



Recap: Transformer

- "Attention is all you need", NeurIPS 2017
- We didn't cover positional encoding (particularly for language translation)
- More info available at: http://jalammar.github.io/illustrated-transformer/





What to Cover Today...

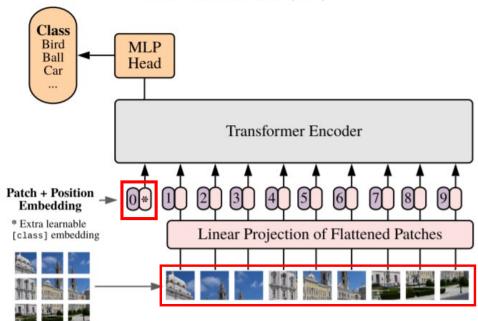
- Recurrent Neural Network & Transformer
 - Attention in RNN
 - Attention is All You Need: Transformer
 - Transformer for Visual Analysis
 - Visual Classification
 - Semantic Segmentation & More
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

"a corgi wearing a bow tie and a birthday hat"

Teddy bears shopping for groceries in the style of ukiyo-e

Vision Transformer

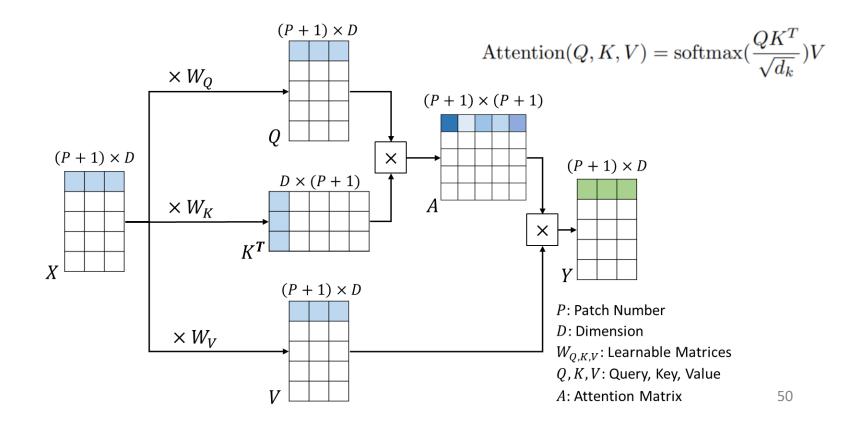
- "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR, 2021. (Google Research)
- Partition the input image into a **patch sequence**
- An additional **token** (*) is appended to perform attention on patches
- Both the "*" token and positional embeddings (denoted by 0, 1, 2 ...) are trainable vectors



Vision Transformer (ViT)

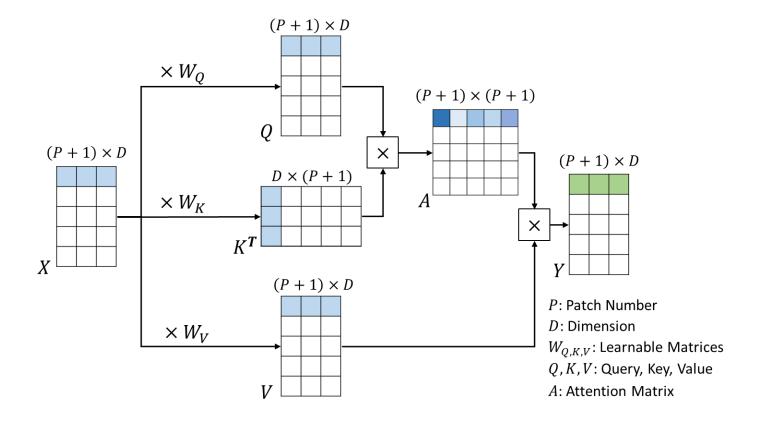
Query-Key-Value Attention in ViT

- Assume that the input is partitioned into 4 patches and the feature dimension is 3, that is, P=4 and D=3
- Note that there are (P+1) rows since we have an additional token



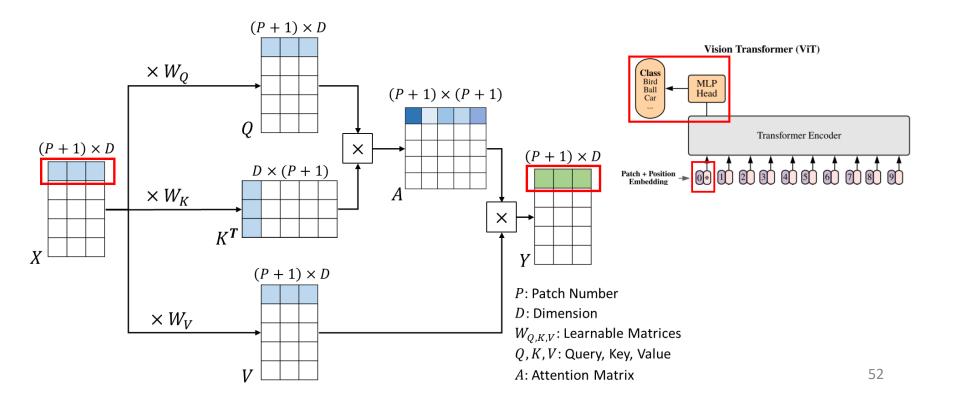
Query-Key-Value Attention in ViT

- By performing attention, the input sequence X (of length P+1) is "transformed" into another sequence Y with the same length
- That is why it is called "Transformer" and how it is a seq2seq model



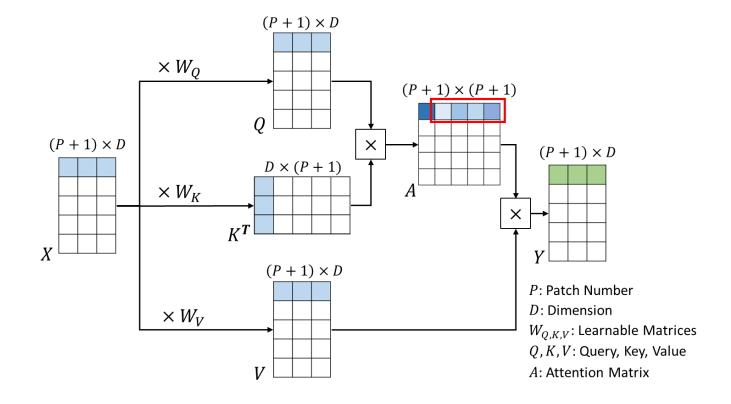
Query-Key-Value Attention in ViT

- In standard vision transformer, we only take the **first output token** of the output sequence (the **first row** of Y) for classification purposes
- This corresponds to the output when token "0" serves as query

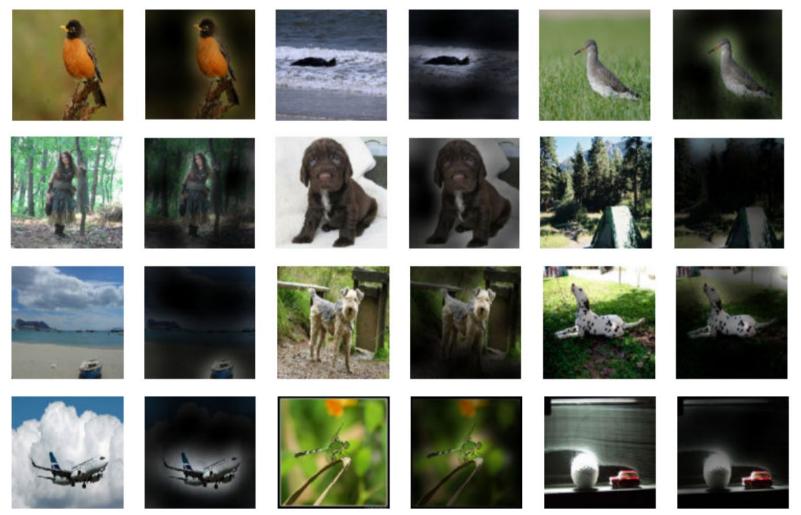


Visualization

- To visualize the attention maps, we take the attention scores from the **first row** of A (when token "0" serves as query)
- Note the first element is excluded, and thus there are P scores corresponding to the P image patches

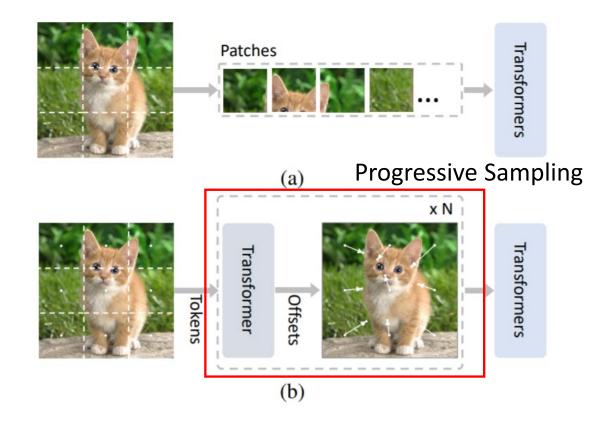


Example Visualization

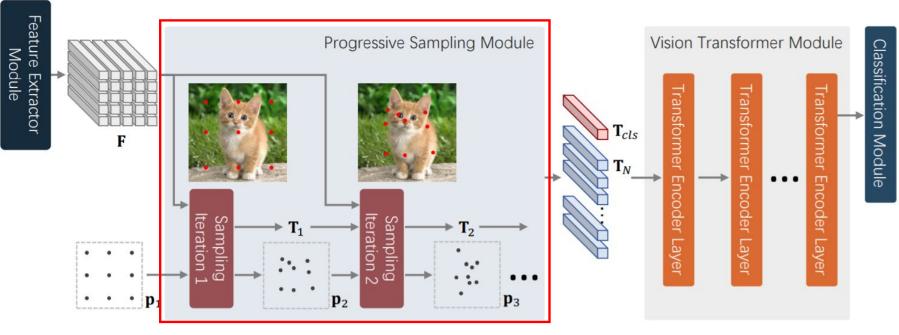


PS-ViT

- Vision Transformers with Progressive Sampling
- Progressively select important patches by shifting patch centers



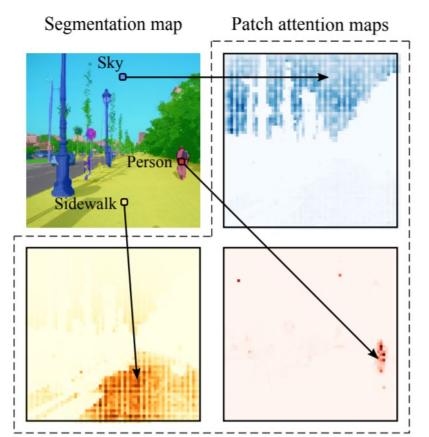
PS-ViT (cont'd)



Example Visualization

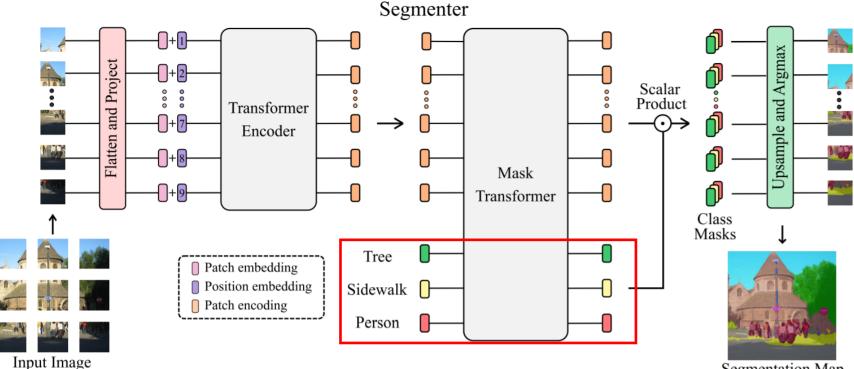
Transformer for Semantic Segmentation

• Segmentation via attention



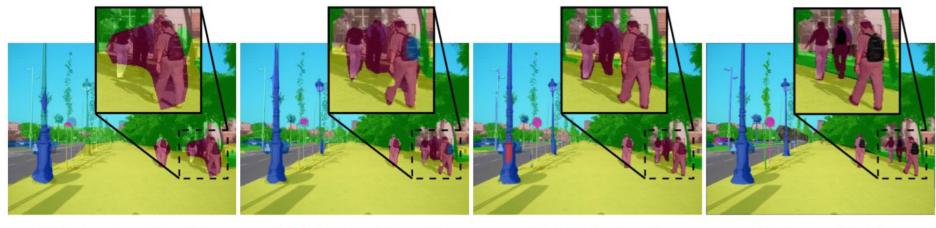
Transformer for Semantic Segmentation

• Using different class tokens ("Tree", "Sidewalk", "Person", ...) as queries



Segmentation Map

Example Visualization



(a) Patch size 32×32

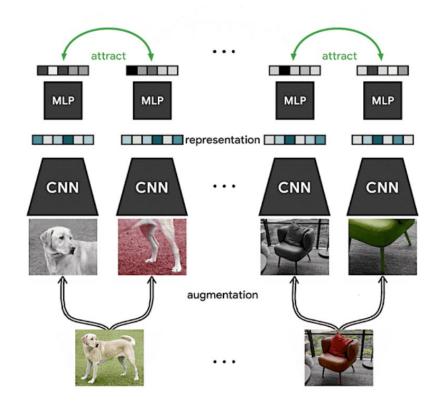
(b) Patch size 16×16

(c) Patch size 8×8

(d) Ground Truth

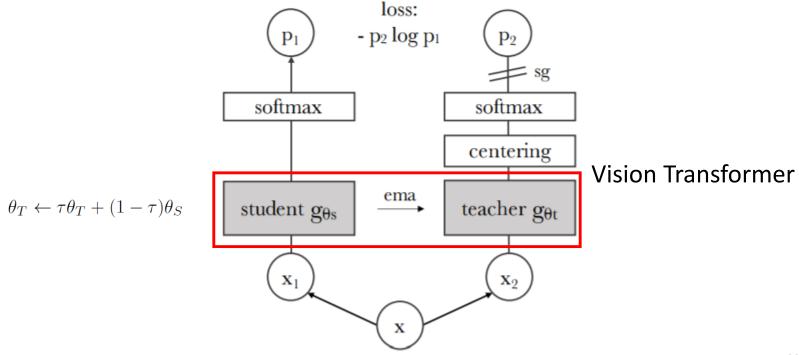
Self-Supervised Learning (SSL) for Transformer

- Learning discriminative representations from unlabeled data
- Create self-supervised tasks via data augmentation



Self-Supervised Transformer

- Vision Transformer + **SSL**
- Maximize the similarity between the augmented version and itself
- Avoid collapse with **student-teacher** network



Qualitative & Quantitative Results

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5

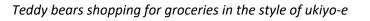
What to Cover Today...

Recurrent Neural Network & Transformer

- Attention in RNN
- Attention is All You Need: Transformer
- Transformer for Visual Analysis
 - Visual Classification
 - Semantic Segmentation & More
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

"a corgi wearing a bow tie and a birthday hat"





A picture is worth a thousand words... Is it that simple?

- Thing
- Airplane
- Flying airplane in blue sky
- A Lufthansa MD-11 cargo plane in blue sky flying over mountainous terrain

Vision + Language \rightarrow ?

- Image Captioning
- Image Manipulation/Completion
- Composed Image Retrieval
- Visual Question Answering (VQA) and many more...

Image Captioning

Applications: semantics understanding, image-text retrieval, medical AI, etc.

Image Captioning (cont'd)

- Training a captioning model requires a large amount of image-caption data pairs
- Image captioning in the wild:
 - Describing images with novel content during inference
 - For example, COCO dataset has 80 object categories.
 How to generalize captioning models to Open Image (w/ 600 classes)?
- Domain-specific image captioning:
 - From general-purpose captioning to task-oriented captioning

COCO (80 classes)

Two pug dogs sitting on a **bench** at the beach.

A child is sitting on a couch and holding an umbrella.

Open Images (600 classes)

dolphin

artichoke

accordion

balloon

68

Image Captioning in the Wild

- Novel Object Captioning (NOC)
 - Training with captioned and uncaptioned data captioned data: labeled image data with captions (e.g., COCO) uncaptioned data: only labels of novel classes available (e.g., Open Images)

COCO (80 classes)

Two pug **dogs** sitting on a **bench** at the beach.

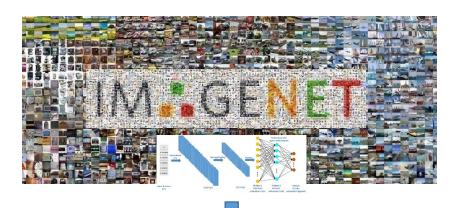
A child is sitting on a couch and holding an umbrella.

We have captioning data

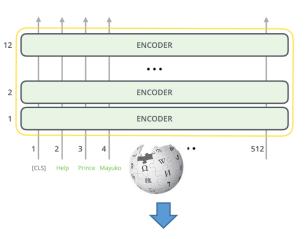
but w/o captions

Novel Object Captioning

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning (AAAI'21)
 - Pre-training a cross-modality Transformer for vision & language tasks
 - Pre-training really matters, since it's been observed in
 - Computer Vision (e.g., models pre-trained on ImageNet)
 - Natural Language Processing (e.g., BERT pre-trained on Wikipedia)



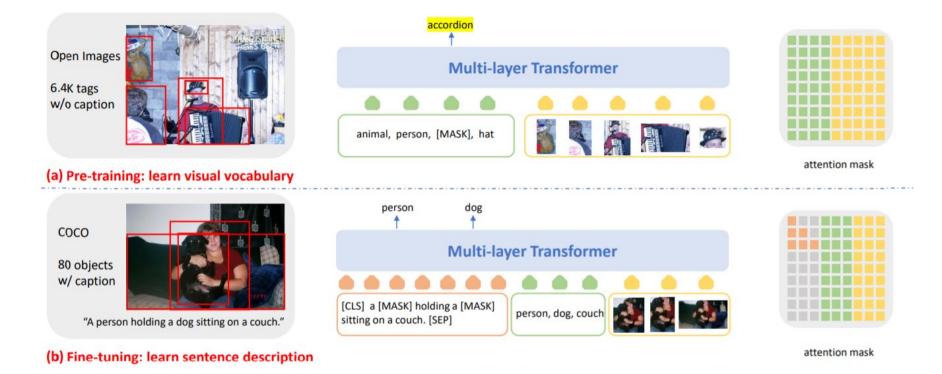
Object detection, semantic segmentation, etc.



Question answering, Sentence classification, etc.

Novel Object Captioning (cont'd)

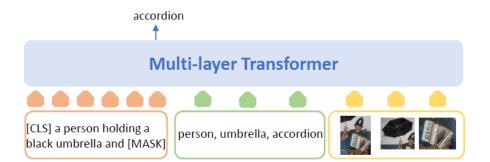
- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
 - Pre-training: uncaptioned image data containing novel class labels
 - Fine-tuning: (a limited amount of) image data with class labels & descriptions



Novel Object Captioning (cont'd)

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
 - Pre-training: uncaptioned image data containing novel class labels
 - Fine-tuning: (a limited amount of) image data with class labels & descriptions
 - Inference:
 - Inputs: image (with region features & tags) & [CLS]
 - Output: caption

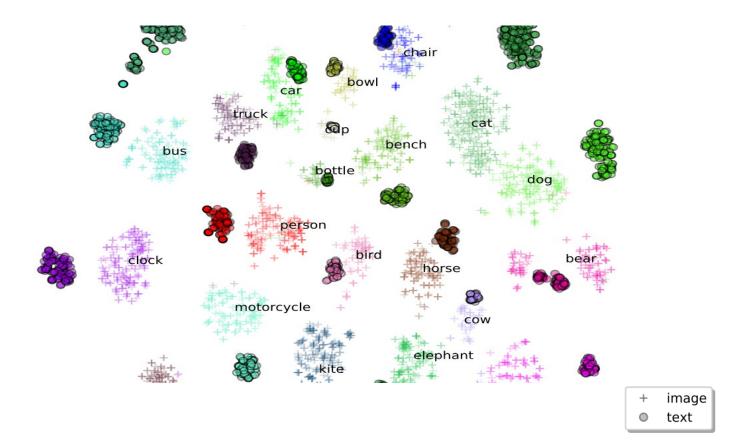
(c) Inference: novel object captioning



A person holding a black umbrella and accordion.

Novel Object Captioning (cont'd)

- VIVO: Visual Vocabulary Pre-Training for Novel Object Caption Captioning
 - Properly aligned image and text data for captioning



Beyond Image Captioning: Unified Vision & Language Model

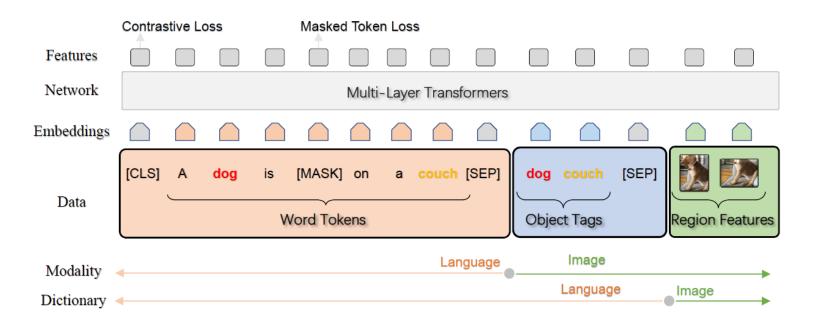
- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training data: triplets of caption-tag-region
 - Objectives:
 - 1. Masked token loss for words & tags
 - 2. Contrastive loss tags and others
 - Fine-tuning:

5 vision & language tasks (VQA, image-text retrieval, image captioning, NOC, etc.)

Image-Text Pairs: 6.5M	Understanding
(1) Masked Token Loss (2) Contrastive Loss	o VQA O GQA O NLVR2
Image-Text Representation	 Image-Text Retrieval Text-Image Retrieval
(A dog is sitting Dog on a couch , Couch , Marcon)	Generation
Word-Tag-Region Triplet	O Image Captioning O Novel Object Captioning
Pre-training —	Fine-tuning

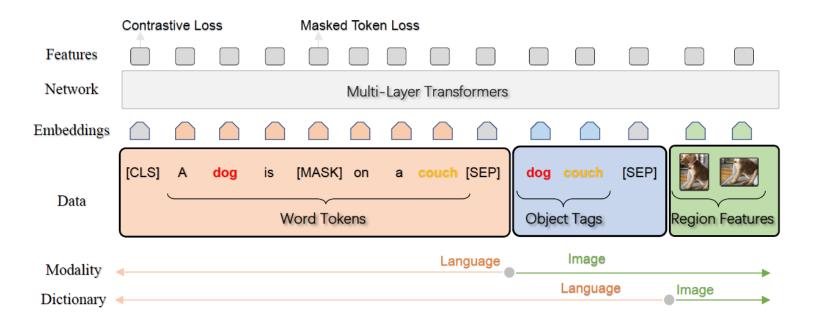
Semantics-Aligned Pre-training for V+L Tasks

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training:
 - Inputs: triplets of caption-tag-region
 - Objectives: Masked token loss for words & tags + Contrastive loss tags and others
 - Fine-tuning:
 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)



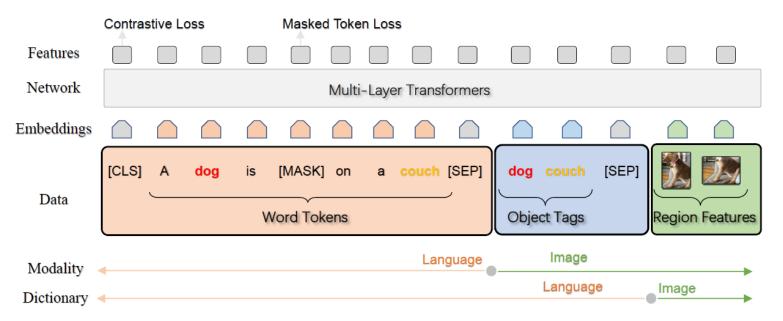
Semantics-Aligned Pre-training for V+L Tasks (cont'd)

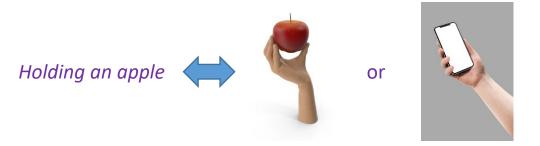
- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Training:
 - Inputs: triplets of word-tag-region
 - Objectives: Masked token loss for words & tags + Contrastive loss tags and others
 - Fine-tuning:
 - 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)



Semantics-Aligned Pre-training for V+L Tasks (cont'd)

- Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks (ECCV'20)
 - Fine-tuning: 5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)
 - Take image captioning as an example
 - Training: triplets of image regions features + object tags + captions as inputs; caption tokens with full attention on image regions/tags but not the other way around
 - Inference: image regions, tags and [CLS] as inputs, with [MASK] tokens sequentially added/predicted





- Oscar (cont'd)
 - Fine-tuning:

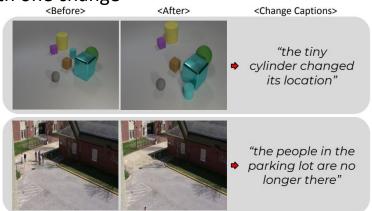
5 vision & language tasks (image captioning, NOC, VQA, image-text retrieval, etc.)

- Take image-text retrieval as an example
 - Training: aligned/mis-aligned image-text pairs as positive/negative input pairs, with [CLS] for binary classification (1/0)
 - Inference: for either image or text retrieval, calculate classification score of [CLS] for the input query

	Contrastive Loss			Masked Token Loss										
Features														
Network	Multi-Layer Transformers													
Embeddings	\bigcirc								\bigcirc					
Data	[CLS]	A	dog	is] on	а	couch	[SEP]	dog	couch	[SEP]		
	Word Tokens								Object Tags			Region Features		
Modality	<							Lan	guage		Image			
Dictionary	•										Languag	e		

Image Change Captioning

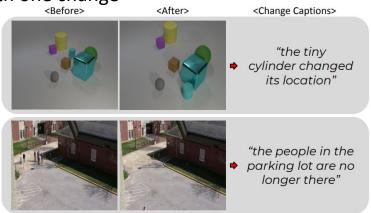
- Goal: Caption the difference(s) between input images
 - Inputs: images with difference(s) + ground truth caption for the difference(s)
 - For image pair with one change



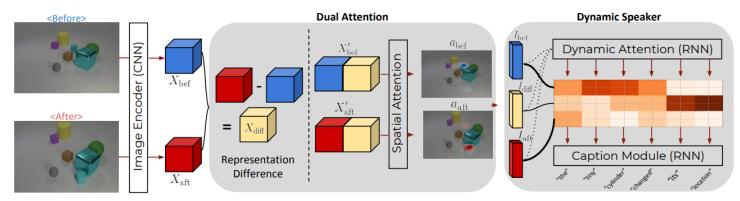
• For image pair with multiple changes (Yue et al., ICCV'21)

Image Change Captioning

- Goal: Caption the difference(s) between input images
 - Inputs: images with difference(s) + ground truth caption for the difference(s)
 - For image pair with one change



• E.g., Robust Image Change Captioning, Dong et al., ICCV'19



What to Cover Today...

Recurrent Neural Network & Transformer

- Attention in RNN
- Attention is All You Need: Transformer
- Transformer for Visual Analysis
 - Visual Classification
 - Semantic Segmentation & More
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis

"a corgi wearing a bow tie and a birthday hat"

Teddy bears shopping for groceries in the style of ukiyo-e

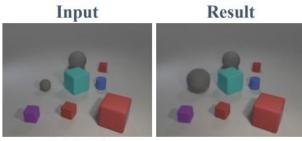
Image Manipulation

- Text-to-Image Synthesis & Manipulation
 - Task #1: Text-to-image generation
 - Produce images based on their descriptions
 - Training: image-caption pairs
 - Recent works: Show & Tell (CVPR'15), StackGAN (ICCV'17), DALL-E (OpenAI)
 - Example:

Teddy bears shopping for groceries in the style of ukiyo-e

DALL-E

- Text-to-Image Synthesis & Manipulation (cont'd)
 - Text-to-image generation
 - Task #2: Image manipulation by text instruction
 - Allow users to edit an image with complex instructions (e.g., add, remove, etc.)
 - Training: reference image & instruction as inputs; target image as output
 - E.g., GeNeVa-GAN (ICCV'19), TIM-GAN (MM'21)
 - Task #3: Text/caption-guided image manipulation
 - Edit image regions to match image descriptions
 - Training: image-caption pairs
 - E.g., GLIDE (OpenAl'21), Tedi-GAN (CVPR'21), ManiTrans (CVPR'22)



make middle-left small gray object large

Fig. 1 Example of image manipulation by text instruction

Fig. 2 Example of text (caption)-guided image manipulation

Challenges in Text-Guided Image Manipulation

- Localization
 - Needs to identify objects in an image, locate the target location or objects of interest
 - Requires image understanding (with both semantics & spatial info)
- Manipulation

a fire in the background

- Needs to understand the input caption/instruction for manipulating images
- Preserves object interaction and style to alleviate possible mismatch after manipulation

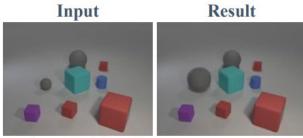
Input

Localization

Manipulation

Text-Guided Image Manipulation (cont'd)

- Remarks & Opportunities
 - Not easy to collect training data with full supervision
 - Large-scale V&L pre-training models available (e.g., CLIP)
 - Task #2 (manipulate by instruction) vs. Task #3 (manipulate by text guidance)



make middle-left small gray object large

Fig. 1 Example of image manipulation by text instruction

A yellow tower.

Fig. 2 Example of text (caption)-guided image manipulation

• Can scale up to industrial level with paired training data available

Selected Work on Text-Guided Image Manipulation

- GLIDE
 - Developed by OpenAI in 2021
 - Training:
 - Image-caption pairs and randomly generated masks
 - Learns to recover the missing part based on the caption

- Testing: image, caption, and mask annotated by user
- Later extended by a recent CVPR'22 work (DiffusionCLIP) for semantics improvements

"a corgi wearing a bow tie and a birthday hat"

"only one cloud in the sky today"

Composed Image Retrieval

- Goal
 - Given a reference image and its modification text (i.e., a cross-modal query), retrieve the target image from the database
 - Very different from image-text or text-image retrieval!

I want to change it to longer sleeves and yellow in color.

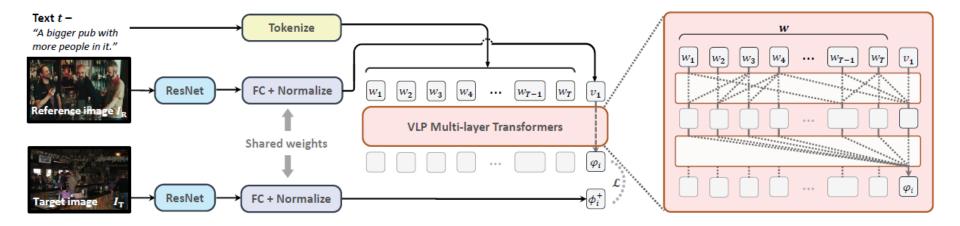
Reference Image

Modification Text

Target Image

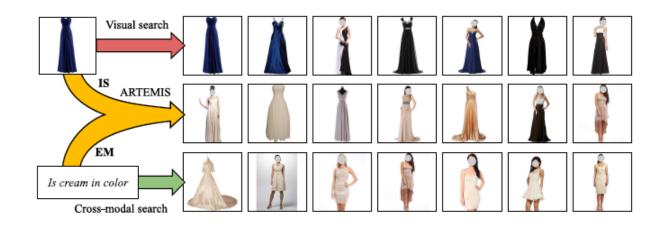
Composed Image Retrieval with Pre-trained V&L Models

- Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
 - Extract image features by a pre-trained ResNet
 - Aggregate information from modification text and reference image by a pre-trained OSCAR
 - Instead of use of output token [CLS], the derived output image feature ϕ is used for retrieval



Retrieval with Text-Explicit Matching & Implicit Similarity

- Attention-based Retrieval with
 - Text-Explicit Matching and Implicit Similarity (ARTEMIS)
 - Image search with free-form text modifier
 - Cross-modal learning and visual retrieval
 - Text-guided attention is introduced ARTEMIS



• Attention-based Retrieval with

Text-Explicit Matching and Implicit Similarity (ARTEMIS) (cont'd)

• Implicit Similarity (IS):

attention mechanism focusing on what's not mentioned by text and should be preserved

• Explicit Matching (EM):

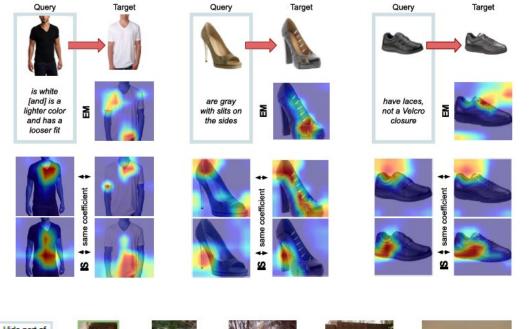
attention mechanism focusing on what's mentioned by text and should be changed.



• Attention-based Retrieval with

Text-Explicit Matching and Implicit Similarity (ARTEMIS) (cont'd)

• Example Results & Extension



What to Cover Today...

- Recurrent Neural Network & Transformer
 - Attention in RNN
 - Attention is All You Need: Transformer
 - Transformer for Visual Analysis
 - Visual Classification
 - Semantic Segmentation & More
- Vision & Language
 - Image Captioning
 - Text-to-Image Synthesis
- HW #3 is out!

"a corgi wearing a bow tie and a birthday hat"

Teddy bears shopping for groceries in the style of ukiyo-e