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What to Be Covered Today...

* Transfer Learning

e Visual Synthesis — Style Transfer

e Recurrent Neural Networks
* From RNN to LSTM & GRU
* Selected Models for Sequence-to-Sequence Learning
* Attention in RNN
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Transfer Learning for Image Synthesis

* Cross-Domain Image Translation

Pix2pix: Pairwise cross-domain training data

CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data

UNIT: Learning cross-domain image representation (with unpaired training data)
AdalN: Single-image arbitrary style transfer in real-time

Beyond image translation




Pix2pix

* Image-to-image translation with conditional adversarial networks (CVPR’17)
e Can be viewed as image style transfer

INPUT OUTPUT

pIX2pix

process

Sketch Photo

Isola et al. " Image-to-image translation with conditional adversarial networks." CVPR 2017. 4



I///;(, “7“5-5 Ib = T/F Testing Phase
Pix2pix Voeead uZ=»~S 1=/ g8

* Goal / Problem Setting
* Image translation across two distinct domains (e.g., sketch v.s. photo)

V. Pairwise training data

e Method: Conditional GAN Training Phase
* Example: Sketch to Photo 'n?ut . Generated
* Generator % ‘ IS
Input: Sketch = = }M[H:H]—- fake
Output: Photo s
* Discriminator |nE>ut
Input: Concatenation of Input(Sketch) real

& Synthesized/Real(Photo) images

Output: Real or Fake J« 0
i - real

“Input

Isola et al. " Image-to-image translation with conditional adversarial networks." CVPR 2017.



CycleGAN/DiscoGAN/DualGAN

e CycleGAN

* Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks -to-image translation with conditional adversarial networks

Paired Unpaired

* Easier to collect training data

> « More practical

1-to-1 No
Correspondence Correspondence

Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017. 6



CycleGAN

Training data

* Goal / Problem Setting S Paining
* Image translation across two distinct domains ‘ |

* Unpaired training data

* Idea
* Autoencoding-like image translation

* Cycle consistency between two domains

Cycle Consistency

Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017. 7



UNIT

* Unsupervised Image-to-Image Translation Networks (NIPS’17)
* Image translation via learning cross-domain joint representation

Stagel: Encode to the joint space Stage2: Generate cross-domain images
Z: Joint latent space Z: Joint latent space
Z e Zo
Day Night Night

ONG) G O,

Liu et al., "Unsupervised image-to-image translation networks.”, NIPS 2017 8



UNIT B

. shared latent space

e Goal/Problem Setting

* Image translation
across two distinct domains

e Unpaired training image data

_\
* |dea

* Based on two parallel VAE-GAN models

so wveR -

-ﬁ',‘{ o

Liu et al., "Unsupervised image-to-image translation networks.”, NIPS 2017 9



Transfer Learning for Image Synthesis

* Cross-Domain Image Translation

* AdalN: Single-image arbitrary style transfer in real-time

10



AdalN

* We've talked about style transfer methods like Pix2Pix or CycleGAN.

 Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization (ICCV’17)
* Single-image arbitrary style transfer in real-time

11

Huang et al. ” Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization . ” ICCV 2017
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AdalN BT e 1
Content il g< : b
. ®
1 | =
= = ] 1 5 AR gl < !
e ‘\'_/Style Transfer Network ' §_8 "
_________________ E
L
o
£ mean J()
0()—\/"16“" (i) (Fizi() = H))?
VvV VvV
| E-w/o

e x:content input, y: style input

* No learnable affine parameters

* Perform style transfer in the feature space

12
Huang et al. ” Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization . ” /CCV 2017 & http://shorturl.at/EW149



http://shorturl.at/EW149

AdalN (cont’d)

- — e = = e e = = = =

* f:Encoder, g: Decoder -
Lk}
1 AdaiN 3
. 8 )
_ Style Transfer Network g:_ é L.
________________ a

Content loss (via content/perceptual consistency):
o 1 2
Lcontent (pa €I, "!) = 5 Z (-Ff:;; - P,i;) .
i,j
Style loss (via Gram matrix loss):
1 2
7 ; Ik » & ANZM? Zj (G = A3)

L

Lstyie(@, T) = Z wy Ly

» -C'Iutai (}'—T a:s f) — @'Cm-utent(ﬁ: KF) - .ﬁgstyie (a: f)

13
Huang et al. ” Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization . ” ICCV 2017 & http://shorturl.at/egtQT



http://shorturl.at/egtQT

AdalN

e Qualitative

results

Style Content Ours Chen and Schmidt  Ulyanov et al. Gatys et al.
14

Huang et al. ” Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization . ” ICCV 2017



Transfer Learning for Image Synthesis

* Cross-Domain Image Translation

* Beyond image translation

15



Revisit: CycleGAN

Training data

* Goal / Problem Setting

Unpaired

* Image translation across two distinct domains

* Unpaired training data

* Idea
* Autoencoding-like image translation
* Cycle consistency between two domains

Cycle Consistency

Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017. 16



o

d

(a) Testing Usage for all models

BicycleGAN

* Toward Multimodal Image-to-Image Translation (NIPS’17)

* Goal / Problem Setting
* Producing diverse images across two distinct domains.
e Pairwise training data

* Idea
* Combine conditional VAE-GAN and conditional Latent Regressor GAN.

V@) o

Training cVAE-GAN

Training BicycleGAN 17



BicycleGAN - Experiment

Input Ground truth Generated samples

18
Zhu et al., Toward Multimodal Image-to-Image Translation, NIPS 2017



DRIT

* Diverse Image-to-Image Translation via Disentangled Representations
(ECCV’18 oral)

* Goal / Problem Setting

* Producing diverse images across two distinct domains.

e Unpaired training data

* |dea

* Disentangle latent representation into
domain-invariant and domain-specific features

* Generate cross-domain images by swapping
the latent feature from each domain.
* Applied cross-cycle consistency

. X domain
. Y domain
I:] Loss

. Prior distribution

L™ Eq (2) [




Method — Main Framework

Attribute: species
Content: pose (style)

e e s L(iC Eq (5) = mm i .

Loss

J

1@

U L(iC Eq (5) R, :

20
Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018 (oral)



Method — For Attribute Features

e KL loss:
perform stochastic sampling at test time.
* Latent regression loss:
encourage invertible mapping btw image and latent representations

21

Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018 (oral)



Method — Inference phase

I

No1) B

(b) Testing with random attributes (c) Testing with a given attribute

Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018 (oral)
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Example Results

SummerD
Winter

C

Monet
Photo D

C

Cat
C Dog D

Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018 (oral)
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What to Be Covered Today...

)

WK
e Recurrent Neural Networks ‘%’"rﬁ
* From RNN to LSTM & GRU

* Selected Models for Sequence-to-Sequence Learning

* Attentionin RNN
fm;ﬁ/ M/@/ e FOREIGN MINISTER.
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What Are The Limitations of CNN?

* Deal with image data
* Both input and output are images/vectors

e Simply feed-forward processing

DOG

CAT

MONKEY

25



Example of (Visual) Sequential Data

7011:%/ M/@/ ) FOREIGN MINISTER,

W e THE SOUND OF

SRR AR TR ETRE ?

https://quickdraw.withgoogle.com/#

26



More Applications in Vision

Image Captioning

Vision

O

Language

Deep CNN Generating

RNN

—>

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

Figure from Vinyals et al, “Show and tell: A neural image caption generator”, CVPR 2015
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More Applications in Vision

Visual Question Answering (VQA)

Input —

o

When was the picture
is featured on the truck? if turning right? taken? umbrella?

A: A bald eagle. A: Onto 24 % Rd. A: During a wedding. A: Two women.
Outpu{ A: A sparrow. A: Onto 25 % Rd. A: During a bar mitzvah. A: A child.

A: A humming bird. A: Onto 23 % Rd. A: During a funeral. A: An old man.

A: Araven. A: Onto Main Street. A: During a Sunday church A: A husband and a wife.

eandira

Who is under the

2

Q: What endangered animal Q: Where will the driver go

Figure from Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
28



How to Model Sequential Data?

* Deep learning for sequential data
e 3-dimensional convolution neural networks

k —_>

H K ‘d<lL /
L
output

(C) 3D convolution

3D convolution



How to Model Sequential Data?

* Deep learning for sequential data
* Recurrent neural networks (RNN)

® ® ® ®
o= =0 S S S
& & & &

RNN

@—>—@




Recurrent Neural Networks

e Parameter sharing + unrolling
* Keeps the number of parameters fixed
* Allows sequential data with varying lengths

* Memory ability
* Capture and preserve information which has been extracted

G  ® ®)
1 I
A [ A A
b & b

@—>—@

®)
A
6



Recurrence Formula

e Same function and parameters used at every time step:

[ {frfpe sk

new state output vector state at  input vector
fortimet attimet timet-1 attimet
function

with parameters W

)

32



Recurrence Formula

e Same function and parameters used at every time step:

)

he, Ve = fw(he—1, x¢)

N

hy = tanh(Wpphe_q + Wepxe)

Yt =

hy



Multiple Recurrent Layers

!

G
C
Y(t)
R W oE ARG
B hT hT _T kT hT hT ‘T
t f f i t f t
X(t)

Time

34



Multiple Recurrent Layers

é

& A 4 A A A
A

X(t)

AR R AR




one to many many to one many to many many to many

e.g., image caption e.g., action recognition e.g., video prediction e.g., video indexing

36



Example: Image Captioning

bouguetof pottle of water  glass of water with
red flowers = 7 ice and lemon

“straw” “hat” END

dining table
with breakfast
items

plate of fruit

banana
slices

fork

START “straw” "hat”

a person
sitting at a
table

Figure from Karpathy et a, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015 37



image
conv-64

conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
sofgax

CNN

38



image
conv-64

conv-64
maxpool

~ conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool
FC-4096
FC-4096

\'

Wih

T

x0
<STA
RT>

<START>

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

39



imge | <
conv-64 _

conv-64
maxp_ool

conv-128

conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

~ FC-4096
~ FC-4096

hO

x0
<STA
RT>

straw

<START>

sample!

test image

40



 image |

conv-64
conv-64

ma;p_ool

conv-128
conv-128

rnaxpool

conv-256
conv-256
maxpool

conv-512
conv-512

maxpool
conv-512

conv-512

max_pool

FC-4096
FC-4096

y0 y1
hO > h1

T

T

x0
<STA
RT>

straw

<START>

test image

41



ﬁng | -
conv-64

conv-64
rnax_pool

conv-128
conv-128

maquol

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

y0 y1
hO H—»{ h1

T

T

x0
<STA
RT>

straw

hat

<START>

test image

sample!

42



image -

test image

conv-64
conv-64
maxpool

~ conv-128
conv-128

max_pool

conv-256

y0 y1 y2
conv-256
maxpool A A A \ Sample
conv-512 <E N D> t0ken

conv-512

maxpool ho | h1 = h2 => finish.
conv-512
conv-512 T T T
maxpool
~ FC-4096 ”
FC-AOQG <STA straw hat

RT>

<START>

43



Training RNNs:
Back Propagation Through Time

* Let’s focus on one training instance.

* The divergence to be computed is between
the sequence of outputs by the network and the desired output sequence.

* Generally, this is not just the sum of the divergences at individual times.

DIV
D(1..T)

Y (0) ¥ (1) Y (2) Y(T—-2) Y(T-1) Y(T)

RPN

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

44



Back Propagation Through Time (BPTT)

Backpropagation from h,
to h,_, multiplies by W
(actually W, T)

— h

s D

W—( )= tanh

e L
1% T

A

4

%t

Loy = tanh(Whhht_l ~+ Wmhﬁct)

= tanh ((Whh Wha) (h;j))

()

45



Back Propagation Through Time (BPTT)

W-’O,.—_' tanh

1L

— ™ stack

Computing gradient of
h, involves many
factors of W

(and repeated tanh)

W-’OZ tanh

HL

— > stack

Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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Gradient Vanishing & Exploding

e Computing gradient involves many factors of W

o Exploding gradients : Largest singular value > 1

o Vanishing gradients : Largest singular value < 1

Backpropagation from h,
to h, , multiplies by W
(actually W, )

-
W_,QZ tarib ht = tanh(Whhht—l I Wmh.fct)
i T — h ht—l
ht P stjck L_-. ht tanh | (Wh, Why) i
—] (3 ("))
X t

47



Solutions...

Gradients clipping : rescale gradients if too large

0.35
0.30
0.25,
0.20 £
0.15
0.10
0.05

How about vanishing gradients?

o Change RNN architecture!

— standard gradient descent trajectories

--=» gradient clipping to fix problem

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)

48



Variants of RNN

* Long Short-term Memory (LSTM) trochreiter et at, 1997
Additional memory cell

Input/Forget/Output Gates

Handle gradient vanishing

Learn long-term dependencies

e Gated Recurrent Unit (GRU) (choetat, evnee 20141
e Similar to LSTM
No additional memory cell
Reset / Update Gates
* Fewer parameters than LSTM
Comparable performance to LSTM (chung et al., NiPS Workshop 2014]



Vanilla RNN vs. LSTM

Vanilla RNN LSTM
s D
Ct'l O] * + - Ct "
. - hi—1
h;|= tanh (I‘T | B |) . f
i
=
v v W_Hk)__. }o tanh
Outputintime t Inputin time t g
h.y T stack ‘
\ >0 > O h. —
(S tJ

50




~
~

Input Gate

Forget Gate

.

.-

Block

Long Short-Term Memory (LSTM)

Forget gate f= o (Wi L he—1, x¢] [+ by)
Input gate t= o (Widlhi—1, 2] |F b;)
Input activation | }, = tanh (Wi | [hie—1, ] H by)
Output gate 0= o (Wo {[he—1, ] H+ bo)
Cell state Ce = f &e—1+10 ;L Memory Cell
Hidden state hy = 0 ® tanh(c)
A 4 ¢

Outputintimet

Inputintime t

Signal control
the output gate

(Other part of
the network)

Signal control
the input gate
(Other part of
the network)

Image Credit: Hung-Yi Lee

Other part of the network

Special Neuron:

Output Gate

Input Gate

Other part of the network

4 inputs,
1 output

Signal control
the forget gate
(Other part of
the network)

51



Long Short-Term Memory (LSTM)

Cell state
Ct—1 —>» (& » | »Ct
t t
f 1 — tanh
' v
I I h 0 — (»
tot
0] (O  tanh 0}
Hidden state 4 4 5 4 4
bt —— Wy, Wi, Wi, W, hy
4

Tt

f= o (Wl 2]+ by)
i= o (W [he—1, 2] +b;)
h= tanh Wy [he_1,2¢] + bp)
o= o0  (Wy-[hi—1,2¢] + bo)

= [Oa_1+i0h
hy =  o® tanh(cg)



Long Short-Term Memory (LSTM)

Cell state

Ct—1

f
0]
Hidden state L—_f

bt —— Wy, Wi, Wi, W,

*
Tt

Calculate forget gate f:
whether to erase cell

f= o (Wp-lher, 2] + by)
t= o (Wi-lhi—1, 2] + b;)
h= tanh (Why - [he_1,24] + bp)
o= o0  (Wy-[hi—1,2¢] + bo)

= fOa_1+i®h
hy =  o®tanh(c;)



Long Short-Term Memory (LSTM)

Cell state

Ct—1

Q—>—

1
o)

Hidden state L%

Rt —— Wy, Wi, Wi, W,

*
Lt

Calculate input gate i:
whether to write to cell

f= o Wyl 2]+ by)
i= o (Wi [h—1, 2] + b;)
h= tanh (Why - [he_1,24] + bp)
o= o0  (Wy-[hi—1,2¢] + bo)
= fOa1+i®h
hy =  o®tanh(c;)



Long Short-Term Memory (LSTM)

Cell state

Ct—1

tanh

4
5

y €
]
7\
O 0O
Hidden state 4 4

ht—l —> Wf, W;

*
Tt

hs [4/5

Calculate input activation:
how much to write to cell

= o (Wy-lhr,24] + by)
t= o (Wi-lhi—1, 2] + b;)
h= tanh Wy [he_1,2¢] + bp)
o= o0  (Wy-[hi—1,2¢] + bo)
ct = f@Ct—l—Fi@E
hy =  o®tanh(c;)



Long Short-Term Memory (LSTM)

Cell state
Ct—1
y €
R
to4
0] (O  tanh 0]
Hidden state 4 4 X 4 4
Rt —— Wy, Wi, Wi, W,
7

Tt

Calculate output gate o:
how much to reveal cell

f= o (Wg-lhe—1, 2] + by)
t= o (Wi-lhi—1, 2] + b;)
h= tanh (Why - [he_1,24] + bp)
o= o (W [ht—1,2¢ + o)

= fOa_1+i®h
hy =  o®tanh(c;)



Long Short-Term Memory (LSTM)

> Q »O

Cell state
Ct—1 —> O > +
t t
o i—=0
t
h
7\
0] (O  tanh
Hidden state 4 4 X 4

Rt —— Wy, Wi, Wi, W,

*
Tt

Update memory cell

f= o (Wil 2]+ )
i= o (W [he—1, 2] +b;)
h= tanh (Why - [he_1,24] + bp)
o= o0  (Wy-[hi—1,2¢] + bo)

= [Oca_1+i0h
hy =  o®tanh(c;)



Long Short-Term Memory (LSTM)

Cell state
Ct—1 —>» (& » | »Ct
t t
f 1 — tanh
' v
I I h 0 — (»
tot
0] (O  tanh 0}
Hidden state 4 4 X 4 4
Rt —— Wy, Wi, Wi, W, hy
4

Tt

Calculate output h,

f= o (Wil 2]+ )
i= o (W [he—1, 2] +b;)
h= tanh (Why - [he_1,24] + bp)
o= o0  (Wy-[hi—1,2¢] + bo)

= [Oa_1+i0h
hy =  o®tanh(c;)



Long Short-Term Memory (LSTM)

Cell state
Ct—1 —> © > | »Ct
7\
. 1 —> @ tanh
t '
h o— (»
to4
(O  tanh 0}
Hidden state 4 * 4
ht—l—» We, Wi, Wy, W, hy
4
Tt

Prevent gradient vanishing
if forget gate f is open (>0).

= o

(Wy - [he—1, 2] + by)
i= o (Wi [hem1, 2] + b;)
(

h= tanh (W - |hi—1, ] + bp)
0= (Wo - [ht—1, ] + bo)
Cct = . D1+ 10 h
=  o@®tanh(c)

59



LSTM: Gradient Flow

Backpropagation from c,

Vg _'\\\
o | to c., only elementwise
Cea R . multiplication by f, no
I matrix multiply by W
~ f
W_Plf_-\—_’ I _I—s ‘ !:t 9
\Er/ | _,_.'O tanh ft _ g (W (ht—l) +h )
g 0t o Xt h
h ~ stack gt tanh
t-1 | 0 ©) h, —/— .
o t ) =01 +titOge
hy = o O tanh(cy)
Xt
Remarks:

- Linear relationship between c, and c , instead of multiplication relationship of h, and h,, in vanilla RNN

UMich EECS-498-007 60



LSTM: Gradient Flow

Uninterrupted gradient flow!

CU T.._+-||—c CJ_‘ T.._+-||—c Czd Tq_+-\|—c C3
f l f l f
i i i

W_":i_j: _L'{:j nh W— B _L'{:j nh W-— B _L'® nh
b o=~ e
 —— stT:k 0 ¢ —» h o - —'—F stT:k 0 ¢ —» hl___  —— stT:k 0 @ —» hl ____
Similar to
ResNet!
Remarks:

- Linear relationship between c, and c, instead of multiplication relationship of h, and h,, in vanilla RNN
- Forget gate f provides shortcut connection across time steps

UMich EECS-498-007 61



Variants of RNN

e Gated Recurrent Unit (GRU) (choetat, evnee 20141
e Similar to LSTM
No additional memory cell
Reset/Update Gates
* Fewer parameters than LSTM
Comparable performance to LSTM (chung et al., NiPS Workshop 2014]



LSTM vs. GRU

Forget gate f = o (Wf . [h’t—17$t] + bf)
Input gate i= o (Wi [hi_1,x¢] + b;)
Inputactivation k= tanh (Wp, - [he1, Z¢] + bn)
Outputgate o= o (W, [hi—1, 2] + bo)
Cell state = [Oc_1+i0Oh
Hidden state hy = 0@ tanh(c;)

Reset gate

Update gate

Hidden state

r =

z =

o (Wr : [ht—17 xt] + br)
o (W, [ht—1,2¢] +b)
Input activation h = tanh (W - [(r ® he—1), x¢] + bp)

hiy=2z0h 1+(1—2)Oh

63



Gated Recurrent Unit (GRU)

Hidden state
hy—1
o (Wr : [ht—laxt] + br)
2 (Wz : [ht—laxt] + bz)
tanh  (Wh - [(r ©® ht—1), 2] + bp,)

N
I

hi=20hi 1+ (1—2) Gh

64



Gated Recurrent Unit (GRU)

Hidden state

ht—l ht

Reset gate

O S

Calculate reset gate r

2 (Wr : [ht—laxt] + br)
2 (Wz : [ht—laxt] + bz)
tanh  (Wh - [(r ©® ht—1), 2] + bp,)

hi=20hi 1+ (1—2) Gh

65



Gated Recurrent Unit (GRU)

Hidden state

ht—l ht

r
Update gate 2

h

Calculate update gate z

= o (Wp-lh—1,2¢] + by)
= o (W [ht—1,2¢] +b)
= tanh (Wy - [(r © hi—1), 2] + bp)

hi=20hi 1+ (1—2) Gh
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Gated Recurrent Unit (GRU)

Hidden state

hy—1

Input activation

Calculate input activation

= o (Wp-lh—1,2) + by)
= o (W - [hi—1, @] +b2)
= tanh (Wp - [(r © ht—1),®¢] + bp)

hi=20hi 1+ (1—2) Gh
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Gated Recurrent Unit (GRU)

Hidden state

hy

Hidden state

Calculate output

o (Wr : [ht—laxt] + br)
2 (Wz : [ht—l’xt] + bz)
tanh  (Wh - [(r ©® ht—1), 2] + bp,)

O S
N

hi=20h_1+(1—2)0h

68



Gated Recurrent Unit (GRU)

Hidden state
Prevent gradient vanishing if update gate z is open!

hi_1 rO—> F— Iy
A -~ r = o (Wr : [ht—laxt] + br)
— P> W), — tanh —f\—bil Z = o (Wz : [ht—lamt] + bz)
N (T) - - h= tanh (Wh-[(r®hi—1),x¢] + bp)
t t hi=2z®h 1 h
Wr_>0' 1_ t=z® t—1+( 7”2)@
_>
Wi, g <
Lt
Remarks:

- Update gate z provides shortcut connection across time steps
- Linear relationship between ht and ht1 instead of multiplication relationship of ht and ht-1in vanilla RNN



Vanilla RNN, LSTM, & GRU

iy
T

)

A

A 4

Outputintimet

Inputin time t
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LSTM vs. GRU

Cell state
Number of Gates N/A 3 2
Parameters Least Most Fewer

Gradient Vanishing /

Exploding ® © ©
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What to Be Covered Today...
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e Recurrent Neural Networks Sl

» Selected Models for Sequence-to-Sequence Learning
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Sequence-to-Sequence Modeling

Setting
* Aninput sequence X,, ..., Xy
* An output sequence Yy, ..., Yy,
* Generally N # M, i.e., no synchrony between Xand Y

 Examples
» Speech recognition: speech goes in, and a word sequence comes out
* Machine translation: word sequence goes in, and another comes out
* Video captioning: video frames goes in, word sequence comes out

r BB B EE!

i I
Deep learning rocks! 73



S-to-S Models with Alighment

* The input and output sequences happen in the same order
* The input/output sequences may be asynchronous.

e E.g., speech recognition or video captioning, in which the input sequence
corresponds to the phoneme/caption sequence out.

e Recall that...

one to many many to one many to many many to many

e.g., image caption e.g., action recognition e.g., video prediction e.g., video captioning

74



Sequence-to-Sequence Modeling (cont’d)

* Original model proposed in NIPS 2014

e An encoder-decoder model

N B B N e B o B e

bl

ENCODER Reply

DECODER

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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What’s the Potential Problem?

* Each hidden state vector extracts/carries information across time steps
(some might be diluted downstream).

* However, information of the entire input sequence is embedded into a
single hidden state vector.

An pomum comedit me
A * Iy A
RNN - > e » RNN - > e > BNN - > e > BRNN - M b » RNN - > b > BRNN - > > BRNN - > - > RNN




RNN -

What’s the Potential Problem? (cont’d)

e QOutputs at different time steps have particular meanings.

* However, synchrony between input and output seqs is not required.

NG \ N g

An pomum comedit
A ‘.“ A
e > BNN - ¥ e » BNN - > e > BNN - » BNN - > - > BNN - » > BNN - »
A A A A
ate an apple <BOS> An pomum

comedit
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What’s the Potential Problem? (cont’d)

* Connecting every hidden state between encoder and decoder?

e T oAan - pomum | comedit
et A A A
RNN - > » RNN > » RNN - » » RNN -uuﬂuu*} RNN > 3% RNN > % BRNN - >
S x 7y * .".. ‘,-“I 3 x *

* Infeasible!
* Both inputs and outputs are with varying sizes.
* Overparameterized
* Possible solution: attention (will cover next week)



Recent Advances of GAN-based Models
for Video-Based Applications

* Video Generation
* MoCoGAN: Decomposing Motion and Content for Video Generation (CVPR’18)

* Video Prediction
® Deterministic
* Unsupervised Learning of Video Representations using LSTMs (ICML'15)

®* Decomposing Motion and Content for Natural Video Sequence Prediction
(ICLR’17)

® Learning to generate long-term future via hierarchical prediction (ICML'17)
® Stochastic (if time permits)
® Stochastic Video Generation with a Learned Prior (Denton et al., ArXiv’'18)

one to many many to one many to many many to many

Pt t e g




Video Generation

® Learning a latent space to describe image/video data

® |Input: latent representation

® Qutput: sequence of images/frames (i.e., video)

E.g., Latent space for content-motion decomposition

Fear

Disgust

Latent Space Image / Video Space
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Video Generation

® MoCoGAN: Decomposing Motion and Content for Video Generation (tulyakov et al, CVvPR'18)

oalio- o))

Generated Video: v =

Real Video: \'4

Objective Function:

max min Fy(Dry, Dy, G, Ry)
G1,tm D1, Dy

= Ey[-log Di(S1(v))] + Eg[-log(1 — Di(S1(¥)))] +
Ey[~1log Dy (S1(v))] + Eg[-log(1 — Dy(St(v)))]
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Example Results

® MoCoGAN: Decomposing Motion and Content for Video Generation (tulyakov et al, CvPR'18)

Results:
- Content

Person1 Person 2 Person 3 Person4 Person 5 Person 6 Person7 Person 8 Person 9 Person 10 Person 12

Content subspace Motion subspace

Fear Disgust
-.... ..-.. .

Fear
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Recent Advances of Attention models
in Video-Based Applications

* Video Prediction
® Deterministic
* Unsupervised Learning of Video Representations using LSTMs (ICML'15)
* Decomposing Motion and Content for Natural Video Sequence Prediction (ICLR’17)
® Learning to generate long-term future via hierarchical prediction (ICML'17)



Video Prediction

® Input: A few known frames
® Output: Unknown future frames
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Video Prediction - Deterministic

* Unsupervised Learning of Video Representations using LSTMs
(Srivastava et al., ICML'15)

Input Reconstruction

I - LSTM Encoder-Decoder model
- Two tasks: Reconstruction & Prediction

Learned
Representation

u - Results (L: ref video, R: output video)
" - - Bouncing (Moving) MNIST

|k i

- Video patches of UCF-101

"W ':1 W -'3 m m

Sequence of Input Frames

Future Prediction va i
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Video Prediction - Deterministic

* Decomposing Motion and Content for Natural Video Sequence Prediction

(Villegas et al., ICLR’17)

History of image differences

Motion Encoder

oo o S B Multi-scale

[N ]

=Conv

=Deconv

! Motion Residual

I I Shared I J . .
(LsT™ }-{1s™™ }-{15™M ] Combination

layers

Decoder

Content Encoder Multi-scale

Content Residual

T

Image attime t

Hidden state
(motion)

Motion Encoder cell state

[dt,Ct] = fdyn (Xt - Xt—ladt—lact—l)

Content Encoder cont
s; = f (Xt)

Multi-scale Motion & Content Residual

! AR
ry = f* ([St’dt})
Combination Layers and Decoder

ft _ gcomb ([dt;StD )A(t—|—l _ gdec (ftart)

—> Recurrently generate i‘t+2, 9AUt+3, ceey 3A7t+T

— G (X1:4) = Xpq1:447T
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* Decomposing Motion and Content for Natural Video Sequence Prediction

(Villegas et al., ICLR’17)

Motion Encoder

Multi-scale

D =Conv

=Deconv

: Motion Residual

Shared I i

(LsT™ }-{15™™ }-{1s™1 ] Combination
layers

Decoder

-l

G

Content Encoder Multi-scale

Content Residual

G (Xl:t) = fit+1:t+T

Objective Function:  Adversarial Training -> alternate btw min L & Ldisc

L1:t Tt41:4+T

Tt Teg1:44T

Real

Update Image Generation Network (G)

Pixel Value similarity

L = aLling + BLGAN T Gradieni of Pixel Value similarity

Lime = Lp (Xtqks Xtk ) + Lot (Xetkr Xe k)

LGAN = — log D ([Xl:t: G (Xl:t)])

Update Discriminator (D)
Lgise = —log D ([Xl:t: xt—i—l:t—i—T]) — log (1 - D ([Xl:ta G (Xl:t)]))
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* Example Results

Ground-@rut‘le — ConvLSTM i Mathieu gt a{
t=1 ! t=1 ! t=1 J




Video Prediction - Deterministic

* Learning to generate long-term future via hierarchical prediction
(Villegas et al., ICML'17)

Pose
Estimation

Image
Generation

I _— . —_—
t=1 I h
t=2 =
t=3
t=4

Stage 1:

Pose Estimation Hourglass network (Newell et al., Eccv'16)
Stage 2:

Future Pose Prediction Sequence-to-Sequence model on high-level structure
Stage 3:

Image Generation Visual-Structure Analogy
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* Learning to generate long-term future via hierarchical prediction
(Villegas et al., ICML'17)

Pose
Estimation

Image
Generation

t=1

t=2 I
t=3
t=4

Step 2:
Future Pose Prediction Sequence-to-Sequence model on high-level structure
Objective Function:
T L
(LSTM }+{ LST™M }+{ LST™M }+{ LSTM F{ LSTM }+{ LSTM™ | 1 N I 9
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Pose
Estimation

Image
Generation

* Learning to generate long-term future via hierarchical prediction
(Villegas et al., ICML'17)

Step 3:

Image Generation Visual-Structure Analogy

=40 __t= Objective Function:

Adversarial Training -> alternately minimize L & Lbisc

Update Image Generation Network (G)
L= Cimg + £feat + EG-::n

Cims: = HX'H-TL - }A{t—l—-nH%

s "
~ e Liea = [|C1 (X¢1n) — O1 (Xegn) |2
- ™ +[Co (Xe1n) = Co (Ren) [
T e

Piin Xian

['Gcn = - IOg D ([pt-l-na }A{H'HD
— Update Discriminator (D)
. - ‘
A 4?‘-— Lpisc = —log D ([pt+-n,xt+n])
—0.5l0g (1 = D ([pr4n . Xe4n)))
—0.5l0g (1 = D ([pt+n,xt)))
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® Example Results

Results on Penn Action Dataset:

0180_baseball_swing 0836_galf_swing
i vLSTM

0981 jump_ rope 1048 jumping_ jacks 1990_tenniz farehand
onvLITH Optical flow nvLITM
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What to Be Covered Today...

e Recurrent Neural Networks

* Attention in RNN

701% M)@/ ) FOREIGN MINISTER,
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What’s the Potential Problem of RNN?

* Each hidden state vector extracts/carries information across time steps
(some might be diluted downstream).

* However, information of the entire input sequence is embedded into a
single hidden state vector.




What’s the Potential Problem? (cont’d)

e QOutputs at different time steps have particular meanings.

* However, synchrony between input and output seqs is not required.

) 4 ¥ ) 4

ANN s NN s BNN s RNN
: a ; .

I ar:n a stuc:lent
* * * =

Je suis étudiant <EOS>
————— > BNN > —--» RNN f---—-» —---» BNN > —----» RNN
A A A A
<BOS> Je suis étudiant



RNN with Attention is Good, But..

* Connecting every hidden state between encoder and decoder?

e T oAan - pomum | comedit
et A A A
RNN - > » RNN > » RNN - » » RNN -uuﬂuu*} RNN > 3% RNN > % BRNN - >
S x 7y * .".. ‘,-“I 3 x *

* Infeasible!
* Both inputs and outputs are with varying sizes.
* Overparameterized



Solution Ver. 1: Attention Model

 What should the attention model be?

* ANN whose inputs are z and h while output is a scalar,
indicating the similarity between z and h.

* Most attention models are jointly learned or trained with other
parts of network (e.g., recognition, etc.)

1
@
A

attention

-1 Z
model 0

RNN > hy —-> RNN |~ hy > RNN > hg > RNN > hy
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Solution: Attention Model

.1'"-
ag
A
> hy > RNN
x
A

RNN -

!

Computer
3 “n-'“ i Zn (- » Z
a; ag 0 1
A A :
Co
A
» hg - > BRNN > hy _ f
co=2.ah
“ = 0.5h, + 0.5h,
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Solution: Attention Model

1
a
A
attention |
model
A
RNN > hy BNN
A A
) B

RNN -

%

RNN -

W

Zp

Computer

Co
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Solution: Attention Model

RNN -

RNN

A

RNN -

18

0.5

Y

RNN -

b

2y

Computer vision
- A
----------- M Zy e 2y
* A
Co Cq
A

c, =Y ah
= 0.5h, + 0.5h,
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Solution: Attention Model

1
a,
A
attention
model
A
RNN f----» hy - RNN
A A
() B

RNN -

18

RNN -

-

Computer vision
J—— r ,I‘
ZO """""" » Z-I """""" » Z1
A A
Co (o

Repeat the process until
<EOS> token was generated
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Selected Attention Models
for Image-Based Applications

Image Captioning

* Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention”, ICML’15

Visual Question Answering
e Zhu et al, “Visual7W: Grounded Question Answering in Images”, CVPR 16

Image Classification
* Mnih et al, “Recurrent Models of Visual Attention”, NIPS 14

Image Generation
* Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML’15



Image Captioning with Attention

* RNN focuses visual attention at different spatial locations when

generating corresponding words during captioning.

14x14 Feature Map

B

't“,

Image Feature Extraction over the image

__'__'_;’:;i LSTM |
E '/,‘- \ ._,;: —-
e .

A |

[bird |
flying
over

a
body
of

water
1. Input 2. Convolutional 3, RNN with attention 4. Word by

word

generationJ

Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

103



Image Captioning with Attention

104



Image Captioning with Attention

Distribution of attention over L locations

| | ap ‘
| A
) .
Z s I 1 [ |
= o

-1 k-

Cg <BOS>

Weighted combination of features
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Image Captioning with Attention

.....................................
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Image Captioning with Attention

Distribution of attention over L locations

‘ o ‘ (4] A
: A k\ E
— ¥
O Features:
Z ............. » ZG ....................... » z T E e > 22 .
zZ LxD
- ELd 'l. S
Co <BOS> c, A

Weighted combination of features
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Image Captioning with Attention

Features:
LxD

a A a girl
3 El 3 el
....................... h z'l B e e 22 ............h.
L e
Co <BOS> c, A

Repeat the process until
<EOS> token was generated
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Image Captioning with Attention

A dog is standing on a hardwood floor., A stop sign is on a road with a
mountain in the background.

A little girl sitting on a bed with A group of people sitting on a baat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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Selected Attention Models
for Image-Based Applications

e Visual Question Answering
e Zhu et al, “Visual7W: Grounded Question Answering in Images”, CVPR 16



Visual Question Answering

e Examples of multiple-choice QA & pointing QA

: What endangered animal Q: Where will the drivergo  Q: When was the picture Q: Who is under the

Q
is featured on the truck? if turning right? taken? umbrella?
A: A bald eagle. A: Onto 24 % Rd. A: During a wedding. A: Two women.
A: A sparrow. A: Onto 25 % Rd. A: During a bar mitzvah. A: A child.
A: A humming bird. A: Onto 23 % Rd. A: During a funeral. A: An old man.
A: Araven. A: Onto Main Street. A: During a Sunday church A: A husband and a wife.

service.

'/- - ki L

Q: Which is the small Q: Which item is used to Q: Which doughnut has Q: Which man is wearing the
multicolored sprinkles? red tie?

4

Q: Which pillow is farther Q: Which step leads to the
from the window? tub? computer in the corner? cut items?
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Visual Question Answering with Attention

* Pointing-QA attention model Q: Which is the brown bread?

softmax

LSTM o

A

T \ L | |
EMM'l is \ the brown bread ?

h \

t-1
\
m !

8.

e
PELSE.
i

convolutional
feature maps C(l)

! ,"‘&

attention terms a,
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Visual Question Answering with Attention

The peaks of the attention maps reside in
the bounding boxes of the target objects.

What kind of animal is in the photo? Why is the person holding a knife?
A cat. To cut the cake with.

The bottom two examples show QA pairs with
answers not explicitly containing objects.

The attention heat maps are scattered around
the image grids.

Where are the carrots? How many people are there?
At the top. Three.
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Selected Attention Models
for Image-Based Applications

* Image Classification
* Mnih et al, “Recurrent Models of Visual Attention”, NIPS 14



Glimpse Sensor & Glimpse Network

Glimpse sensor: extracts a retina-like representation centered at |, ,

that contains multiple resolution patches.

A)

B -
|

Glimpse Sensor

0 Al
—»| Glimpse 9&’ 8
Sensor E O
ot ) 9 i
1 10
, gl
Glimpse Network : f,( 0,) 9

Glimpse network: given location |, and image x,,
use the glimpse sensor to extract retina representation,
which is mapped into a joint hidden space.

by

fa(0g)

®
b o S
S

& falOa) | | fi(O) f
® o

RNN-based model architecture: the core network takes the
glimpse representation as input with the hidden state vector
from the prevision step, and outputs the new hidden state
resulting in location and action networks to predict the next
location to attend and the associated action.
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Architecture: RNN with Attention Models

Original Image -«

o — %. - B
|

Extract glimpse e — PR | Je(0g)
. L
Extract feature of glimpse «—— g, ig;-f
O hf l O Ii',,;
History Record <+~————h,,_,| fhpl— < | .| fuon) 8
| O

Core Network

Update History Record

oomarimn & 5

Next glimpse Location
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Example Results

e Translated MNIST

e QOriginal MNIST

SN |
EHEY |
Bl |
BT | .
BN
-]
.

EEBAAR
Y IAZTA,




Example: Actual Glimpse Path




What We’ve Covered Today...

* Transfer Learning
* Visual Synthesis — Style Transfer

* Recurrent Neural Networks
e From RNN to LSTM & GRU

* Selected Models for Sequence-to-Sequence Learning
* Attention in RNN

 Next week: Transformer

701% M/@/ ) FOREIGN MINISTER,

119



	Deep Learning for Computer Vision��Fall 2022
	What to Be Covered Today…
	Transfer Learning for Image Synthesis
	Pix2pix
	Pix2pix
	CycleGAN/DiscoGAN/DualGAN
	CycleGAN
	UNIT
	UNIT
	Transfer Learning for Image Synthesis
	AdaIN
	AdaIN
	AdaIN (cont’d)
	AdaIN
	Transfer Learning for Image Synthesis
	Revisit: CycleGAN
	BicycleGAN
	BicycleGAN - Experiment
	DRIT
	Method – Main Framework
	Method – For Attribute Features
	Method – Inference phase
	Example Results
	What to Be Covered Today…
	What Are The Limitations of CNN?
	Example of (Visual) Sequential Data
	More Applications in Vision
	More Applications in Vision
	How to Model Sequential Data?
	How to Model Sequential Data?
	Recurrent Neural Networks
	Recurrence Formula
	Recurrence Formula
	Multiple Recurrent Layers
	Multiple Recurrent Layers
	投影片編號 36
	Example: Image Captioning
	投影片編號 38
	投影片編號 39
	投影片編號 40
	投影片編號 41
	投影片編號 42
	投影片編號 43
	Training RNNs: �Back Propagation Through Time
	Back Propagation Through Time (BPTT)
	Back Propagation Through Time (BPTT)
	Gradient Vanishing & Exploding
	Solutions…
	Variants of RNN
	Vanilla RNN vs. LSTM
	Long Short-Term Memory (LSTM)
	投影片編號 52
	投影片編號 53
	投影片編號 54
	投影片編號 55
	投影片編號 56
	投影片編號 57
	投影片編號 58
	投影片編號 59
	LSTM: Gradient Flow
	LSTM: Gradient Flow
	Variants of RNN
	LSTM vs. GRU
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	投影片編號 70
	LSTM vs. GRU
	What to Be Covered Today…
	Sequence-to-Sequence Modeling 
	S-to-S Models with Alignment
	Sequence-to-Sequence Modeling (cont’d) 
	What’s the Potential Problem?
	What’s the Potential Problem? (cont’d)
	What’s the Potential Problem? (cont’d)
	Recent Advances of GAN-based Models�for Video-Based Applications
	Video Generation
	Video Generation
	Example Results
	Recent Advances of Attention models �in Video-Based Applications
	Video Prediction
	Video Prediction - Deterministic
	Video Prediction - Deterministic
	投影片編號 87
	投影片編號 88
	Video Prediction - Deterministic
	投影片編號 90
	投影片編號 91
	投影片編號 92
	What to Be Covered Today…
	What’s the Potential Problem of RNN?
	What’s the Potential Problem? (cont’d)
	RNN with Attention is Good, But..
	Solution Ver. 1: Attention Model
	Solution: Attention Model
	Solution: Attention Model
	Solution: Attention Model
	Solution: Attention Model
	Selected Attention Models �for Image-Based Applications
	Image Captioning with Attention
	Image Captioning with Attention
	Image Captioning with Attention
	Image Captioning with Attention
	Image Captioning with Attention
	Image Captioning with Attention
	Image Captioning with Attention
	Selected Attention Models �for Image-Based Applications
	Visual Question Answering
	Visual Question Answering with Attention
	Visual Question Answering with Attention
	Selected Attention Models �for Image-Based Applications
	Glimpse Sensor & Glimpse Network
	Architecture: RNN with Attention Models
	Example Results
	Example: Actual Glimpse Path
	What We’ve Covered Today…

