Deep Learning for Computer Vision

Fall 2022

https://cool.ntu.edu.tw/courses/189345 (NTU COOL) http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

2022/10/11

What to Be Covered Today...

- Generative Models
 - Diffusion Model
- Transfer Learning
 - Visual Classification Domain Adaptation
 - Visual Synthesis Style Transfer
- Representation Disentanglement
 - Supervised vs. unsupervised feature disentanglement

Sprouts in the shape of text 'Imagen' coming out of a fairytale book.

From VAE to Diffusion Model

p(x): data distribution 1

- Emerging as powerful generative models
 - Unconditional image synthesis
- Conditional image synthesis
 - Outperforms GANs

Diffusion Models Beat GANs on Image Synthesis, Dhariwai & Nochol, OpenAI, 2021

Cascaded Diffusion Models for High Fidelity Image Generation, Ho et al., Google, 2021

- Emerging as powerful generative models
 - Unconditional image synthesis
 - Conditional image synthesis
 - Outperforms GANs

DALL·E 2

"a teddy bear on a skateboard in times square"

Diffusion Models Beat GANs on Image Synthesis, Dhariwai & Nochol, OpenAI, 2021

Imagen

A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk.

Cascaded Diffusion Models for High Fidelity Image Generation, Ho et al., Google, 2021

Learning to generate by denoising

• 2 processes required for training:

Data

- Forward diffusion process gradually add noise to input **Reverse diffusion process** learns to generate/restore data by denoising (typically implemented via a U-net)
- Comments about noise scheduling (see next slide)

Reverse denoising process (generative)

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020 Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Slide credit: Kreis, Gao, & Vahdat

Learning to generate by denoising (cont'd)

- Forward diffusion process
 - Gradually add noise to the input in T steps
 - Recall that x_0 denotes clean input image, and x_T is the final noisy one.

1000

• Comments on $q(x_t | x_{t-1})$

Learning to generate by denoising (cont'd)

- Forward diffusion process
 - Gradually add noise to the input in T steps (cont'd)
 - Diffusion kernel
 - So what happens to data distribution during this process?

$$\underbrace{q(\mathbf{x}_t)}_{\text{Diffused}} = \int \underbrace{q(\mathbf{x}_0, \mathbf{x}_t)}_{\text{Joint}} d\mathbf{x}_0 = \int \underbrace{q(\mathbf{x}_0)}_{\text{Input}} \underbrace{q(\mathbf{x}_t | \mathbf{x}_0)}_{\text{Input}} d\mathbf{x}_0$$

$$\underbrace{\text{Diffused}}_{\text{data dist.}} \underbrace{\text{Joint}}_{\text{data dist.}} \underbrace{\text{Diffusion}}_{\text{kernel}}$$

The diffusion kernel is Gaussian convolution.

 β_t values schedule (i.e., the noise schedule) is designed such that $\bar{\alpha}_T \to 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Learning to generate by denoising (cont'd)

- Generative learning by denoising
 - Diffusion parameters are designed such that: $q(\mathbf{x}_T) pprox \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I}))$

Diffused Data Distributions

Generation:

Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Iteratively sample $\mathbf{x}_{t-1} \sim q(\mathbf{x}_{t-1} | \mathbf{x}_t)$

True Denoising Dist.

• Unfortunately, $q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$ is intractable. We approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ by Normal distribution by setting small β_t in each step

Learning to generate by denoising (cont'd)

- Reverse diffusion process
 - Learn to denoise in T steps
 - Let the model θ predict $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$
 - And, to conclude the training process first, we need to predict the noise added in image.

Slide credit: Kreis, Gao, & Vahdat

Learning of Diffusion Models

Slide credit: Kreis, Gao, & Vahdat

Recall: Training VAE

$$\begin{bmatrix}
x + y_{\alpha(|x|)} +$$

Slide credit: UMich EECS 498-007

Learning of Diffusion Models (cont'd)

- Recall that $L = \mathbb{E}_{q}\left[\underbrace{\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}}}_{L_{T}} + \sum_{t>1}\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}}}_{L_{t-1}} \underbrace{\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}}\right]$
- Still working on it...
 - Only care about KL divergence between two Gaussian distributions

• For simplicity, we calculate

效

•
$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\Big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \Big\|^2 \Big]$$

Slide credit: Kreis, Gao, & Vahdat and <u>https://youtu.be/HoKDTa5jHvg</u>

Learning of Diffusion Models

- Summary
 - Training and sample generation

Inference.

Algorithm 1 Training	Algorithm 2 Sampling					
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0					

Forward diffusion process (fixed)

Data

Learning of Diffusion Models

- Summary
 - Training and sample generation

More steps

Slide credit: Kreis, Gao, & Vahdat

https://medium.com/ai-blog-tw/%E9%82%8A%E5%AF%A6%E4%BD%9C%E9%82%8A%E5%AD%B8%E7%BF%92diffusion-model-%E5%BE%9Eddpm%E7%9A%84%E7%B0%A1%E5%8C%96%E6%A6%82%E5%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09c

E.g., MNIST

From Unconditional to Conditional Latent Diffusion Model

- Condition mechanism: using transformer layers

From Unconditional to Conditional Latent Diffusion Model (cont'd) Condition mechanism: using transformer layers Tθ is embedding module for conditions, e.g. BERT.

Conditioning Semantic

Мар

Text Repres

What to Be Covered Today...

- Generative Models
 - Diffusion Model
- Transfer Learning
 - Visual Classification Domain Adaptation
 - Visual Synthesis Style Transfer
- Representation Disentanglement
 - Supervised vs. unsupervised feature disentanglement

Sprouts in the shape of text 'Imagen' coming out of a fairytale book.

Revisit of CNN for Visual Classification

(Traditional) Machine Learning vs. Transfer Learning

• Machine Learning

• Collecting/annotating data is typically expensive.

Transfer Learning: What, When, and Why? (cont'd)

• A More Practical Example

https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/ https://googleblog.blogspot.tw/2014/04/the-latest-chapter-for-self-driving-car.html

Domain Adaptation in Transfer Learning

- What's DA?
 - Leveraging info source to target domains, so that the <u>same learning task</u> across domains (or particularly in the target domain) can be addressed.
 - Typically all the source-domain data are labeled.
- Settings
 - Semi-supervised DA: few target-domain data are with labels.
 - Unsupervised DA: no label info available in the target-domain. (shall we address supervised DA?)
 - Imbalanced DA: fewer classes of interest in the target domain
 - Homogeneous vs. heterogeneous DA

Deep Feature is Sufficiently Promising.

- DeCAF
 - Leveraging an auxiliary large dataset to train CNN.
 - The resulting features exhibit sufficient representation ability.
 - Supporting results on Office+Caltech datasets, etc.

Feature	SURF									$Decaf_6$						
data	Dow	SA	SDA	CEV	TCA	ΠΛ	TIM	SCA	JGSA	JGSA	JGSA	IDA	OTGI	JGSA	JGSA	JGSA
uata	Kaw	aw SA	SDA	OFK	ICA	JDA	1 JIVI	SCA	primal	linear	RBF	JDA	OIGL	primal	linear	RBF
														-		
A→D	35.67	33.76	33.76	40.13	33.76	39.49	45.22	39.49	47.13	45.86	45.22	81.53	85.00	88.54	85.35	84.71
A→W	31.19	33.22	30.85	36.95	36.27	37.97	42.03	34.92	45.76	49.49	45.08	80.68	83.05	81.02	84.75	80.00
D→A	28.29	39.87	38.73	28.71	31.00	33.09	32.78	31.63	38.00	36.01	38.73	91.96	92.31	91.96	92.28	91.96
D→W	83.73	76.95	76.95	80.34	86.10	89.49	85.42	84.41	91.86	91.86	93.22	99.32	96.29	99.66	98.64	98.64
W→A	31.63	39.25	39.25	27.56	28.91	32.78	29.96	29.96	39.87	41.02	40.81	90.71	90.62	90.71	91.44	91.34
W→D	84.71	75.16	75.80	85.35	89.17	89.17	89.17	87.26	90.45	90.45	88.54	100	96.25	100	100	100

Recent Deep Learning Methods for DA

- Deep Domain Confusion (DDC)
- Domain-Adversarial Training of Neural Networks (DANN)
- Adversarial Discriminative Domain Adaptation (ADDA)
- Domain Separation Network (DSN)
- Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks (PixelDA)
- No More Discrimination: Cross City Adaptation of Road Scene Segmenters

	Shared weights	Adaptation loss	Generative model
DDC	\checkmark	MMD	×
DANN	1	Adversarial	×
ADDA	×	Adversarial	×
DSN	Partially shared	MMD/Adversarial	×
PixelDA	×	Adversarial	\checkmark

Deep Domain Confusion (DDC) t_{st} 2 Z₁ f_{st}

- Deep Domain Confusion: Maximizing for Domain Invariance
 - Tzeng et al., arXiv: 1412.3474, 2014

Domain Confusion by Domain-Adversarial Training

- Domain-Adversarial Training of Neural Networks (DANN)
 - Y. Ganin et al., ICML 2015
 - Maximize domain confusion = maximize domain classification loss
 - Minimize source-domain data classification loss
 - The derived feature f can be viewed as a disentangled & domain-invariant feature.

Beyond Domain Confusion

- Domain Separation Network (DSN)
 - Bousmalis et al., NIPS 2016
 - Separate encoders for domain-invariant and domain-specific features
 - Private/common features are *disentangled* from each other.

Beyond Domain Confusion

- Domain Separation Network, NIPS 2016
 - Example results

Beyond Domain Confusion

- Domain Separation Network, NIPS 2016
 - Example results

What to Be Covered Today...

- Generative Models
 - Diffusion Model
- Transfer Learning
 - Visual Classification Domain Adaptation
 - Visual Synthesis Style Transfer
- Representation Disentanglement
 - Supervised vs. unsupervised feature disentanglement

Sprouts in the shape of text 'Imagen' coming out of a fairytale book.

Transfer Learning for Image Synthesis

- Cross-Domain Image Translation
 - Pix2pix: Pairwise cross-domain training data
 - CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
 - UNIT: Learning cross-domain image representation (with unpaired training data)
 - AdaIN: Single-image arbitrary style transfer in real-time
 - Beyond image translation

Pix2pix

- Image-to-image translation with conditional adversarial networks (CVPR'17)
 - Can be viewed as image style transfer

Pix2pix

(X, Kin) -> D) > Xreal, Xin) **Г/Г**

Testing Phase

- Goal / Problem Setting
 - Image translation across two distinct domains (e.g., sketch v.s. photo)
 - Pairwise training data
- Method: Conditional GAN
 - Example: Sketch to Photo
 - Generator
 Input: Sketch
 Output: Photo
 - Discriminator
 Input: Concatenation of Input(Sketch)
 & Synthesized/Real(Photo) images
 Output: Real or Fake

Pix2pix

• Learning the model

Pix2pix

• Experiment results

Demo page: https://affinelayer.com/pixsrv/

Transfer Learning for Image Synthesis

• Cross-Domain Image Translation

- Pix2pix: Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT: Learning cross-domain image representation (with unpaired training data)
- AdalN
- Beyond image translation

CycleGAN/DiscoGAN/DualGAN

- CycleGAN
 - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks -to-image translation with conditional adversarial networks

- Easier to collect training data
- More practical

Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." CVPR 2017.

• Goal / Problem Setting

- Image translation across two distinct domains
- Unpaired training data

• Idea

- Autoencoding-like image translation
- Cycle consistency between two domains

41

- Method (Example: Photo & Painting)
 - Based on 2 GANs
 - First GAN (G1, D1): Photo to Painting
 - Second GAN (G2, D2): Painting to Photo
 - Cycle Consistency
 - Photo consistency
 - Painting consistency

42

- Method (Example: Photo vs. Painting)
 - Based on 2 GANs
 - First GAN (G1, D1): Photo to
 - Second GAN (G2, D2): Photo to Pain
 - Cycle Consistency
 - Photo consistency
 - Painting consistency

Painting

Photo Consistency

Photo

Photo

G1

 $G_{1}^{*}, G_{2}^{*} = \arg \min_{G_{1}, G_{2}} \max_{D_{1}, D_{2}} \mathcal{L}_{GAN}(G_{1}, D_{1}) + \mathcal{L}_{GAN}(G_{2}, D_{2}) + \mathcal{L}_{cyc}(G_{1}, G_{2})$ **Cycle Consistency**

• Consistency Loss

Learning

Photo and Painting consistency

 $\mathcal{L}_{cyc}(G_1, G_2) = \mathbb{E}\left[\left\| G_2(G_1(x)) - x \right\|_1 \right] + \left[\left\| G_1(G_2(y)) - y \right\|_1 \right]$

• Example results

horse \rightarrow zebra

photo \rightarrow Monet

Project Page: https://junyanz.github.io/CycleGAN/

Image Translation Using Unpaired Training Data

• CycleGAN, DiscoGAN, and DualGAN

Zhu et al. "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks." *ICCV* 2017. Kim et al. "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.", *ICML* 2017 Yi, Zili, et al. "Dualgan: Unsupervised dual learning for image-to-image translation." *ICCV* 2017

Transfer Learning for Image Synthesis

• Cross-Domain Image Translation

- Pix2pix: Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT: Learning cross-domain image representation (with unpaired training data)
- AdalN
- Beyond image translation

- Unsupervised Image-to-Image Translation Networks (NIPS'17)
 - Image translation via learning cross-domain joint representation

Liu et al., "Unsupervised image-to-image translation networks.", NIPS 2017

- Goal/Problem Setting
 - Image translation across two distinct domains
 - Unpaired training image data
- Idea
 - Based on two parallel VAE-GAN models

- Goal/Problem Setting
 - Image translation across two distinct domains
 - Unpaired training image data
- Idea
 - Based on two parallel VAE-GAN models
 - Learning of joint representation across image domains

- Goal/Problem Setting
 - Image translation across two distinct domains
 - Unpaired training image data
- Idea
 - Based on two parallel VAE-GAN models
 - Learning of joint representation across image domains
 - Generate cross-domain images from joint representation

Adversarial Loss

 $\mathcal{L}_{GAN}(\mathbf{G}_1, \mathbf{D}_1, \mathbf{G}_2, \mathbf{D}_2) = \mathbb{E}[\log(1 - \mathbf{D}_1(\mathbf{G}_1(z))] + \mathbb{E}[\log \mathbf{D}_1(y_1)]$ $\mathbb{E}[\log(1 - \mathbf{D}_2(\mathbf{G}_2(z))] + \mathbb{E}[\log \mathbf{D}_2(y_2)]$

• Example results

Sunny \rightarrow Rainy

Rainy \rightarrow Sunny

Real Street-view → Synthetic Street-view

Synthetic Street-view → Real Street-view

Github Page: https://github.com/mingyuliutw/UNIT

Transfer Learning for Image Synthesis

• Cross-Domain Image Translation

- Pix2pix: Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT: Learning cross-domain image representation (with unpaired training data)
- AdaIN: Single-image arbitrary style transfer in real-time
- Beyond image translation

AdalN

- We've talked about style transfer methods like Pix2Pix or CycleGAN.
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization (ICCV'17)
 - Single-image arbitrary style transfer in real-time

Adaptive Instance Normalization

AdaIN
$$(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$

- *x*: content input, *y*: style input
- No learnable affine parameters
- Perform style transfer in the feature space

AdalN

• *f* : Encoder, *g* : Decoder

$$\mathcal{L}_{c} = \|f(g(t)) - t\|_{2} \quad \text{Content loss: content consistency}$$
$$\mathcal{L}_{s} = \sum_{i=1}^{L} \|\mu(\phi_{i}(g(t))) - \mu(\phi_{i}(s))\|_{2} + \sum_{i=1}^{L} \|\sigma(\phi_{i}(g(t))) - \sigma(\phi_{i}(s))\|_{2}$$

Style loss: Gram matrix loss $(\phi_i \text{ denotes a layer in } VGG - 19 \text{ used to compute style loss})$

AdalN

• Qualitative results

Huang et al. " Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization . " ICCV 2017

Transfer Learning for Image Synthesis

• Cross-Domain Image Translation

- Pix2pix: Pairwise cross-domain training data
- CycleGAN/DualGAN/DiscoGAN: Unpaired cross-domain training data
- UNIT: Learning cross-domain image representation (with unpaired training data)
- AdalN
- Beyond image translation

Revisit: CycleGAN

- Goal / Problem Setting
 - Image translation across two distinct domains
 - Unpaired training data

• Idea

- Autoencoding-like image translation
- Cycle consistency between two domains

Training data

BicycleGAN

(a) Testing Usage for all models

- Toward Multimodal Image-to-Image Translation (NIPS'17)
- Goal / Problem Setting
 - Producing diverse images across two distinct domains.
 - Pairwise training data
- Idea
 - Combine conditional VAE-GAN and conditional Latent Regressor GAN.

BicycleGAN - Experiment

Zhu et al., Toward Multimodal Image-to-Image Translation, NIPS 2017

DRIT

- Diverse Image-to-Image Translation via Disentangled Representations (ECCV'18 oral)
- Goal / Problem Setting
 - Producing diverse images across two distinct domains.
 - Unpaired training data
- Idea
 - Disentangle latent representation into domain-invariant and domain-specific features
 - Generate cross-domain images by swapping the latent feature from each domain.
 - Applied cross-cycle consistency

Method – Main Framework

Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018 (oral)

Method – For Attribute Features

• KL loss:

perform stochastic sampling at test time.

• Latent regression loss: encourage invertible mapping btw image and latent representations

Method – Inference phase

(b) Testing with random attributes

Example Results

Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018 (oral)

What to Be Covered Today...

- Generative Models
 - Diffusion Model
- Transfer Learning
 - Visual Classification Domain Adaptation
 - Visual Synthesis Style Transfer
- Representation Disentanglement
 - Supervised vs. unsupervised feature disentanglement

Sprouts in the shape of text 'Imagen' coming out of a fairytale book.

Beyond Image Style Transfer: Learning Interpretable Deep Representations

- Faceapp Putting a smile on your face!
 - Deep learning for representation disentanglement
 - Interpretable deep feature representation

Input Mr. Takeshi Kaneshiro

Recall: Generative Adversarial Networks (GAN)

- Architecture of GAN
 - Loss $\mathcal{L}_{GAN}(G, D) = \mathbb{E}[\log(1 D(G(x)))] + \mathbb{E}[\log D(y)]$

Goal

- Interpretable deep feature representation
- Disentangle attribute of interest *c* from the derived latent representation *z*
- Possible solutions: VAE, GAN, or mix of them...

• Goal

- Interpretable deep feature representation
- Disentangle attribute of interest *c* from the derived latent representation *z*
 - Supervised setting: from VAE to conditional VAE

- Conditional VAE
 - Given training data **x** and attribute of interest c, we model the conditional distribution $p_{\theta}(x|c)$.

- Conditional VAE
 - Example Results

- Conditional GAN
 - Interpretable latent factor *c*
 - Latent representation z

https://arxiv.org/abs/1411.1784

• Goal

- Interpretable deep feature representation
- Disentangle attribute of interest *c* from the derived latent representation *z*

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016. Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17

AC-GAN

• Supervised Disentanglement

- Learning
 - Overall objective function

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{GAN}(G, D) + \mathcal{L}_{cls}(G, D)$$

Adversarial Loss

 $\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathcal{D}(\mathbf{G}(z, c)))] + \mathbb{E}[\log \mathcal{D}(y)]$

• Disentanglement loss

$$\mathcal{L}_{cls}(\mathbf{G}, \mathbf{D}) = \mathbb{E}\left[-\log \mathcal{D}_{cls}(c'|y)\right] + \mathbb{E}\left[-\log \mathcal{D}_{cls}(c|\mathbf{G}(x,c))\right]$$
Real data
w.r.t. its domain label
Generated data
w.r.t. assigned label

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17

AC-GAN

• Supervised Disentanglement

Odena et al., Conditional image synthesis with auxiliary classifier GANs. ICML'17

InfoGAN

• Unsupervised Disentanglement

- Learning
 - Overall objective function

$$\mathbf{G}^* = \arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) + \mathcal{L}_{cls}(\mathbf{G}, \mathbf{D})$$

Adversarial Loss

$$\mathcal{L}_{GAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}[\log(1 - \mathcal{D}(\mathbf{G}(z, \underline{c})))] + \mathbb{E}[\log \mathcal{D}(y)]$$

• Disentanglement loss

Chen et al., InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets., NIPS 2016.

InfoGAN

- Unsupervised Disentanglement
 - No guarantee in disentangling particular semantics

real

fake

 X_{real} (data)

D

C

 X_{fake}

G

What We've Covered Today...

- Generative Models
 - Diffusion Model
- Transfer Learning
 - Visual Classification Domain Adaptation
 - Visual Synthesis Style Transfer
- Representation Disentanglement
 - Supervised vs. unsupervised feature disentanglement

Sprouts in the shape of text 'Imagen' coming out of a fairytale book.

