Deep Learning for Computer Vision

Fall 2022

https://cool.ntu.edu.tw/courses/189345 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang 王鈺強, Professor

Dept. Electrical Engineering, National Taiwan University

What's to Be Covered Today...

- Generative Models
 - Auto-Encoder vs. Variational Auto-Encoder
 - Generative Adversarial Network (GAN)
 - Diffusion Model

Discriminative vs. Generative Models

Discriminative Model: Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Discriminative model: the possible labels for each input "compete" for probability mass. But no competition between **images**

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Discriminative model: No way for the model to handle <u>unreasonable inputs</u>; it must give label distributions for all images

Discriminative Model: Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Model can "reject" unreasonable inputs by assigning them small values

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Conditional Generative Model: Each possible label induces a competition among all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Recall Bayes' Rule:

We can build a conditional generative model from other components!

Additional Remarks

- Discriminative Models
 - Learn a (posterior)probability distribution p(y|x)
 - Assign labels to each instance x
 - Supervised learning
- Generative Models
 - Learn a probability distribution p(x)
 - Data representation, detect outliers, etc.
 - Unsupervised learning

What Have Been Done Using Deep Generative Models?

Progress on synthesizing images (ImageNet)

Super-Resolution via Repeated Refinements (SR3) by Class Diffusion Models (Google, 2021)

Why We Need Generative Models?

- Remarks
 - Able to process data information (e.g., priors like attribute, category, etc.)
 for synthesis, prediction, or recognition purposes
 - For example, with latent feature z derived from x, one may have P(z) may describe image variants.
 - Or, z in P(z) may annotate object categorical or attribute information.

 We will talk about a variety of visual applications based on generative models later.

Taxonomy of Generative Models

Take a Deep Look to Discover Latent Variables/Representations

Autoencoder

- Autoencoding = encoding itself with recovery purposes
- In other words, encode/decode data with reconstruction guarantees
- Latent variables/features as deep representations
- Example objective/loss function at output:
 - L2 norm between input and output, i.e., will 2 X | 2

Take a Deep Look to Discover Latent Variables/Representations (cont'd)

- Autoencoder (AE) for downstream tasks
 - Train AE with reconstruction guarantees
 - Keep encoder (and the derived features) for downstream tasks (e.g., classification)
 - Thus, a trained encoder can be applied to initialize a supervised model

Take a Deep Look to Discover Latent Variables/Representations (cont'd)

What's the Limitation of Autoencoder?

Taxonomy of Generative Models

Variational Autoencoder

- Probabilistic Spin on AE
 - Learn latent feature z from raw data x
 - Sample from the latent space (via model) to generate data

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network (Similar to **decoder** from autencoder)

p(x|z) is implemented via a (probabilistic) decoder

Decoder inputs z, outputs mean $\mu_{x\mid z}$ and (diagonal) covariance $\sum_{x\mid z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Variational Autoencoder (cont'd)

- Remarks
 - Train VAE via maximum likelihood of data p(x)
 - Note that we don't observe z & need to marginalize it:

$$p_{\theta}(x) = \int p_{\theta}(x, z)dz = \int p_{\theta}(x|z)p_{\theta}(z)dz$$

- However, can't integrate over all possible z!
- What else can we do? Recall that we have Bayes' rule:

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$

We can't compute $p_{\theta}(z \mid x)$, but we can train the encoder module to learn

$$q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$$

Variational Autoencoder (cont'd)

Again, we aim to maximize

$$p_{\theta}(x) = \int p_{\theta}(x, z)dz = \int p_{\theta}(x|z)p_{\theta}(z)dz$$

we have...

latent code z, gives distribution over data x

Decoder network inputs **Encoder network** inputs data x, gives distribution over latent codes z

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z}) \quad q_{\phi}(z \mid x) = N(\mu_{z\mid x}, \Sigma_{z\mid x})$$

• If we ensure $q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$ $p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)} \approx \frac{p_{\theta}(x \mid z)p(z)}{q_{\phi}(z \mid x)}$ then we have

Training VAE

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_z[\log p_{\theta}(x|z)] - E_z \left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$=E_{z\sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)]-D_{KL}\left(q_{\phi}(z|x),p(z)\right)+D_{KL}(q_{\phi}(z|x),p_{\theta}(z|x))$$

Data reconstruction

KL divergence

between sample distribution from the encoder and the prior

KL divergence between sample distribution from the encoder and the posterior of data

$$\Rightarrow \log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

i.e., variational lower bound on the data likelihood $p_{\Theta}(x)$

Summary: From Autoencoder to Variational Autoencoder

Now is a "distribution", we can assume it to be a distribution easy to sample from, e.g. Gaussian assume $p(z) = \mathcal{N}(0, I)$ Decoder Decoder $\mathcal{KL}[\mathcal{N}(\mu(X), \Sigma(X))||\mathcal{N}(0, I)]$ Sample z from $\mathcal{N}(\mu(X), \Sigma(X))$ $\mu(X)||\Sigma(X)||$ Encoder Encoder (Q)X

Reparameterization Trick in VAE

Remarks

- Given x, sample z from latent distribution (described by output parameters of encoder)
- However, this creates a bottleneck since backpropagation cannot flow through
- Alternatively, we apply $z=\mu+\sigma\odot\varepsilon$ (ϵ simply generated by **Normal distribution**).
- This enables BP gradients in encoder through μ and σ , while maintaining stochasticity via ϵ (for generative model purposes).

Implementation of VAE

Initialize parameters of encoder and decoder **Repeat:**

Get mini-batch of X

mu_X, var_X = encoder(X)

\[\epsilon = \text{sampling from Normal(0, I)} \]

\[z = \text{mu_X} + \epsilon^* \text{var_X} \]

\[X' = \text{decoder(z)} \]

\[recon_loss = \text{MSE(X,X')} \]

\[latent_loss = \text{KLD(Normal(mu_X,var_X))} \] \] \[Normal(0,I))

\[all_loss = \text{recon_loss} + \text{latent_loss} \]

\[all_loss.backward() \]

Until: parameters of encoder & decoder converge

First sample noise ϵ from Normal(0,I), then reparameterize z by mu_X + ϵ *var_X, (equivalently sampled Normal(mu_X, var_X)). The model is now differentiable!

Return parameters of encoder and decoder

Before We Move On...

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(x \mid x)} = \log \frac{p_{\theta}(x \mid x)p(z)}{p_{\theta}(x \mid x)} = \log \frac{p_{\theta}(x \mid x)p$$

$$= E_z[\log p_{\theta}(x|z)] - E_z \left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_z \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

Data reconstruction

KL divergence between sample distribution from the encoder and the prior **KL divergence** between sample distribution from the encoder and the posterior of data

$$\Rightarrow \log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

i.e., variational lower bound on the data likelihood $p_{\Theta}(x)$

From Autoencoder to Variational Autoencoder (cont'd)

• Example Results

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

From Autoencoder to Variational Autoencoder (cont'd)

- Example Results
 - A' A + B = B'

What's to Be Covered Today...

- Generative Models
 - Auto-Encoder vs. Variational Auto-Encoder
 - Generative Adversarial Network (GAN)
 - Diffusion Model
- HW #1 is due Oct. 10th Mon 23:59
- HW #2 will be out next week...

From VAE to Generative Adversarial Networks (GAN)

From VAE to GAN (cont'd)

 $P(\bigcirc)$ $P(\bigcirc)$ $P(\bigcirc)$ $P(\bigcirc)$ $P(\bigcirc)$ \cdots

- Remarks
 - What if we only need the decoder/generator in practice?
 - How do we know if the output images are sufficiently good?

Generative Adversarial Network

- Idea
 - Generator to convert a vector z (sampled from P_z) into fake data x (from P_G), while we need P_G = P_{data}
 - **Discriminator** classifies data as real or fake (1/0)
 - How? Impose an adversarial loss on the observed data distribution!

Image credit: W. Chiu

Generative Adversarial Network (cont'd)

- Idea
 - Impose adversarial loss on data distribution
 - Let's see a practical example...

generator: try to generate more realistic images to cheat discriminator discriminator: try to distinguish whether the image is generated or real

Slide credit: W. Chiu

GAN (cont'd)

- Remarks
 - A function maps **normal distribution** N(0, I) to P_{data}
 - How good we are in mapping P_g to P_{data} ?
 - Train & ask the discriminator!
 - Conduct a two-player min-max game

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

Training Objective of GAN

Jointly train generator G and discriminator D with a min-max game

Train G & D with alternating gradient updates

min
$$\max_{G} V(G, D)$$
 For t in 1, ... T:
1. (Update D) $D = D + \alpha_D \frac{\partial V}{\partial D}$
2. (Update G) $G = G - \alpha_G \frac{\partial V}{\partial C}$

Slide credit: I. Goodfellow

Training Objective of GAN (optional trick)

Potential Problem

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{z})) \right) \right] \right)$$

- At start of training, G is not OK yet (obviously);
 D easily tells apart real/fake data (i.e., D(G(z)) close to 0).
- Solution:
 - Instead of training G to minimize log(1-D(z)) in the beginning, we train G to minimize -log(D(G(z)).
 - With strong gradients from G, we start the training of the above min-max game.

Optimality of GAN

Why the min-max game as objective a good idea?

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

$$f(y) = a \log y + b \log (1 - y) \quad f'(y) = 0 \iff y = \frac{a}{a+b} \text{ (local max)}$$

$$f'(y) = \frac{a}{y} - \frac{b}{1-y} \quad \text{Optimal Discriminator: } D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}$$

Optimality of GAN

• Why the min-max game as objective a good idea? (cont'd)

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$\Rightarrow \min_{G} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right) dx$$

$$= \min_{\mathbf{G}} \left(E_{x \sim p_{data}} \left[\log \frac{2}{2} \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right] + E_{x \sim p_{\mathbf{G}}} \left[\log \frac{2}{2} \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

Optimality of GAN

• Why the min-max game as objective a good idea? (cont'd)

$$\begin{aligned} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ &= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \\ &= \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right) \end{aligned}$$

Kullback-Leibler Divergence:

$$KL(\mathbf{p}, q) = E_{x \sim \mathbf{p}} \left[\log \frac{\mathbf{p}(x)}{q(x)} \right]$$

Optimality of GAN

• Why the min-max game as objective a good idea? (cont'd)

$$\begin{aligned} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ &= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right) \\ &= \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right) \\ &= \min_{G} (2 * JSD(p_{data}, p_{G}) - \log 4) \end{aligned}$$

JSD is always nonnegative, and zero only when the two distributions are equal! Thus $p_{data} = p_G$ is the global min, QED

Jensen-Shannon Divergence:

$$JSD(p,q) = \frac{1}{2}KL\left(p, \frac{p+q}{2}\right) + \frac{1}{2}KL\left(q, \frac{p+q}{2}\right)$$

Remarks on Optimality of GAN

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_G) - \log 4)$$

Summary

• The global min of the minmax game happens when

1.
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$
 (Optimal discriminator for any G) \Rightarrow
2. $p_G(x) = p_{data}(x)$ (Optimal generator for optimal D) \Rightarrow

Caution!

- G and D are learned models (i.e., DNNs) with fixed architectures.
 We don't know whether we can actually represent the optimal D & G.
- Optimality of GAN does not tell anything about convergence to the optimal D/G.

What's to Be Covered Today...

- Generative Models
 - Auto-Encoder vs. Variational Auto-Encoder
 - Generative Adversarial Network (GAN)
 - Challenges & Variants of GAN
 - Diffusion Model

- HW #1 is due Oct. 10th Mon 23:59
- HW #2 will be out next week..

Deep Convolutional GAN (DC-GAN)

- Remarks
 - ICLR 2016
 - A CNN+GAN architecture
 - Empirically make training of GAN more stable

Deep Convolutional GAN (DC-GAN)

• Example Results

Collected face dataset

LSUN dataset

Conditional GANs

- Remarks
 - ICLR 2016
 - Conditional generative model p(x|y) instead of p(x)
 - Both G and D take the label y as an additional input...Why? Why not just use D as designed in the standard GAN?

Conditional GANs

• Example Results

Problems in Training GANs: Vanishing Gradients

- What Might Go Wrong?
 - GAN training is often unstable.
 - In other words, training might not converge properly.
 - The discriminator which we prefer is...

Problems in Training GANs: Vanishing Gradients (cont'd)

- What Might Go Wrong?
 - GAN training is often unstable.
 - In other words, training might not converge properly.
 - The discriminator we trained might be as follows.
 In other words, no gradient to guide the generator to output proper images.

• This is known as the problem of *vanishing gradients*.

Problems in Training GANs: Mode Collapse

- Remarks
 - The generator only outputs a limited number of image variants regardless of the inputs.

Problems in Training GANs: Mode Collapse (cont'd)

- Remarks
 - The generator only outputs a limited number of image variants regardless of the inputs.

Photo credit:

https://openreview.net/pdf?id=rkmu5b0a-

Problems in Training GANs: Mode Collapse (cont'd)

- Why Mode Collapse Happens?
 - The objective of GANs assesses the image authenticity, not diversity.
 - Imbalance training between generator/discriminator (exploding/vanishing gradients)

Energy-Based GAN

- Energy Function
 - Converting input data into scalar outputs, viewed as energy values
 - Desired configuration is expected to output low energy values & vice versa.
- Energy Function as Discriminator
 - Use of autoencoder; can be pre-trained!
 - Reconstruction loss outputs a range of values instead of binary logistic loss.
 - Empirically better convergence

EB-GAN

• Example Results

MSGAN

- Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis
- With the goal of producing **diverse** image outputs.
- To address the **mode collapse** issue by conditional GANs

• Motivation (for unconditional GAN)

Proposed Regularization (for conditional GAN)

- Qualitative results
 - Conditioned on paired images

- Qualitative results
 - Conditioned on unpaired images

- Qualitative results
 - Conditioned on text (will talk about Vision & Language later this semester)

Style-based GAN (if time permits)

- A Style-Based Generator Architecture for Generative Adversarial Networks (CVPR'19)
- Design **style-based generator** to achieve **high-resolution** image synthesis
- No particular designs on loss functions, regularization, and hyper-parameters

Style-based GAN (cont'd)

• Style-based generator

- A : Affine transformation
- B: Per-channel scaling factors to the noise input

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i},$$

where $(y_{s,i}, y_{b,i})$ are the outputs of *Affine* transformation

Mapping network & Affine transformations

- a way to draw samples for each style from a learned distribution

Synthesis network

- a way to generate a novel image based on a collection of styles

Style-based GAN (cont'd)

Qualitative results

- ICCV 2019 Best Paper Award
- Remarks:
 - Learning from a single image
 - Handle multiple image manipulation tasks
 - Super-resolution, style conversion, harmonization, image editing, et.

- Related Works
 - While single-image based learning models exist, most existing methods are designed to handle textural images but not natural ones.

- Goal
 - Output images with arbitrary sizes and aspect ratios (via fully conv models) by changing dimensions of noise and the input size

Inference Stage for SinGAN

• Random image generation

• Super-Resolution

• Super-Resolution

	External methods		Internal Methods		
	SRGAN	EDSR	DIP	ZSSR	SinGAN
NIQE	3.4	6.5	6.3	7.1	3.7

Harmonization

Image	Injection scale	Total number of scales
Tree (also Fig. 2, main text)	n = 1	N = 9
Two Dolphins (also Fig. 13, main text)	n=3	N = 9
Single Dolphin	n = 3	N = 9
Fox	n=2	N = 8
Airplane	n=2	N = 8
Butterfly	n = 2	N = 8
Eagle	n = 2	N = 8
Spaceship (also Fig. 13, main text)	n=3	N = 8
Hat	n=4	N = 9
Lemon	n = 3	N = 7
Cat	n = 2	N = 8

Editing

Image	Injection scale	Total number of scales
Rock1	n=5	N = 7
Rock2	n=5	N=7
Rock3 (also Fig. 12, main text)	n=5	N=7
Tree	n = 7	N=9
Mountain	n=4	N=8
Red cliff	n=5	N=9
Hay	n=6	N = 9

70

What's to Be Covered Today...

- Generative Models
 - Auto-Encoder vs. Variational Auto-Encoder
 - Generative Adversarial Network (GAN)
 - Diffusion Model
- HW #1 is due Oct. 10th Mon 23:59
- HW #2 will be out next week...

From VAE to Diffusion Model

- Emerging as powerful generative models
 - Unconditional image synthesis
 - Conditional image synthesis
 - Outperforms GANs

Diffusion Models Beat GANs on Image Synthesis, Dhariwai & Nochol, OpenAI, 2021

Cascaded Diffusion Models for High Fidelity Image Generation, Ho et al., Google, 2021

- Emerging as powerful generative models
 - Unconditional image synthesis
 - Conditional image synthesis
 - Outperforms GANs

DALL·E 2

"a teddy bear on a skateboard in times square"

Diffusion Models Beat GANs on Image Synthesis, Dhariwai & Nochol, OpenAI, 2021

Imagen

A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk.

Cascaded Diffusion Models for High Fidelity Image Generation, Ho et al., Google, 2021

Learning to generate by denoising

- 2 processes required for training:
 - Forward diffusion process gradually add noise to input
 - Reverse diffusion process learns to generate/restore data by denoising (typically implemented via a U-net)
 - Comments about noise scheduling (see next slide)

Data

Noise

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020 Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Learning to generate by denoising (cont'd)

- Forward diffusion process
 - Gradually add noise to the input in T steps
 - Recall that x_0 denotes clean input image, and x_T is the final noisy one.
 - Comments on $q(x_t|x_{t-1})$

Learning to generate by denoising (cont'd)

- Forward diffusion process
 - Gradually add noise to the input in T steps (cont'd)
 - Diffusion kernel
 - So what happens to data distribution during this process?

$$q(\mathbf{x}_t) = \int \underbrace{q(\mathbf{x}_0, \mathbf{x}_t)}_{\text{Diffused}} d\mathbf{x}_0 = \int \underbrace{q(\mathbf{x}_0)}_{\text{Optimized}} \underbrace{q(\mathbf{x}_t|\mathbf{x}_0)}_{\text{Diffusion}} d\mathbf{x}_0$$
 Diffused data dist. Input Diffusion data dist. kernel

The diffusion kernel is Gaussian convolution.

Learning to generate by denoising (cont'd)

- Forward diffusion process
 - Gradually add noise to the input in T steps
 - Diffusion kernel:

Data

Q(X+ | X+-1)= N(X+, 51-| P+ X+-1, | P+ 2)

= 51-| P+ X+-1+ | F+ €

= 54 X-1-1+ 51-a+ €

= 54 x+-1 X+-1 €

+ 51- x+x+-1 €

Forward diffusion process (fixed) $x_0 \qquad x_1 \qquad x_2 \qquad x_3 \qquad x_4 \qquad \dots \qquad x_T$ Noise $\frac{d\mathbf{q} = \mathbf{I} - \mathbf{\beta} \mathbf{t}}{d\mathbf{t}} \qquad \mathbf{t} \qquad$

 β_t values schedule (i.e., the noise schedule) is designed such that $\bar{\alpha}_T \to 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Learning to generate by denoising (cont'd)

- Generative learning by denoising
 - Diffusion parameters are designed such that: $q(\mathbf{x}_T) pprox \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I}))$

Diffused Data Distributions

Generation:

Sample
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$$
 Iteratively sample $\mathbf{x}_{t-1} \sim \underline{q}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ True Denoising Dist.

• Unfortunately, $q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$ is intractable. We approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ by Normal distribution by setting small $\mathbf{\beta}_t$ in each step

Learning to generate by denoising (cont'd)

- Reverse diffusion process
 - Learn to denoise in T steps
 - Let the model θ predict $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$
 - To conclude the learning process first, we need to predict the noise in image.

 $\log p_{\theta}(x) \geq \text{variational lower bound}$

 $\log p_{\theta}(x) \ge \text{ variational lower bound}$

Diffusion model $x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_T$

Recall that we exploit variational bound for optimizing VAE models

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

vs.
$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{\theta}(\mathbf{x}_0)\right] \leq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\right] =: L$$

In Ho et al. NeurIPS'20, it is shown that

$$\mathcal{N}(\chi_{t-1}; \mu_{t}(\chi_{t}, \chi_{s}), \beta_{t}^{2})$$

$$\mathcal{N}_{t}(\chi_{t}, \chi_{s}) = \frac{\int \alpha_{t}(1 - \alpha_{t-1})}{1 - \alpha_{t}} \chi_{t}^{2} + \frac{\int \alpha_{t-1} \beta_{t}}{1 - \alpha_{t}} \chi_{s}^{2} \qquad \text{fixed}$$

$$= \int_{\alpha_{t}} (\chi_{t} - \int_{1-\alpha_{t}}^{\alpha_{t}} \xi) (s|_{t}^{2} ds # 78)$$

Learning of Diffusion Models (cont'd)

- Recall that $L = \mathbb{E}_q \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T|\mathbf{x}_0) \parallel p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))}_{L_{t-1}} \underbrace{\log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)}_{L_0} \right]$
- Still working on it...
 - Only care about KL divergence between two Gaussian distributions

$$\begin{cases} q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})} := \mathcal{N}(\mathcal{N}_{t-1}; \mathcal{N}_{t}(\mathcal{N}_{t},\mathcal{N}_{0}), \mathcal{N}_{t}(\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t}(\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t}), \mathcal{N}_{t}(\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t},\mathcal{N}_{t}),$$

As a result,

$$\mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}(1-\bar{\alpha}_{t})} \left\| \epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1-\bar{\alpha}_{t}}\epsilon, t) \right\|^{2} \right]$$

For simplicity, we calculate

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

- Summary
 - Training and sample generation

84

- Summary
 - Training and sample generation

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \mathrm{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \right) t \right) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: $\mathbf{end} \ \mathbf{for}$ 6: $\mathbf{return} \ \mathbf{x}_{0}$

What We've Covered Today...

- Generative Models
 - Auto-Encoder vs. Variational Auto-Encoder
 - Generative Adversarial Network (GAN)
 - Diffusion Model
- HW #1 is due Oct. 10th Mon 23:59
- HW #2 will be out next week...

