Deep Learning for Computer Vision

Fall 2022

https://cool.ntu.edu.tw/courses/189345 (NTU COOL)

http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

Yu-Chiang Frank Wang £ #%58, Professor

Dept. Electrical Engineering, National Taiwan University

2022/10/4

What’s to Be Covered Today...

(B ﬂ|¥|!.,_ —
oy '#/un:!%llllnhgiiﬁb

il

' /'lr/# \
» Generative Models Y =
e Auto-Encoder vs. Variational Auto-Encoder

nnnnn

% e
l‘s.l:

* Generative Adversarial Network (GAN)
e Diffusion Model

0
SR
‘Iln

i LY

* Unfortunately, lots of equations today...
| will try to make today’s lecture as painless as possible!

Realworld -

images Real

f Discriminator @—
O Fake
Generator Sample ’/

5507

L

Backprop error to
update discriminator
weights

Random Noise
€ ~ p(e)

Latent random variable

Discriminative vs. Generative Models

Discriminative Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative

Model: Learn p(x|y) Discriminative model: the possible labels for
each input "compete” for probability mass.
But no competition between images

Slide credit: UMich EECS 498-007 3

Discriminative vs. Generative Models (cont’d)

Discriminative Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x]|y)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give

label distributions for all images

Slide credit: UMich EECS 498-007 4

Discriminative vs. Generative Models (cont’d)

PR
Discriminative Model:

P(g) ,
- P(#%N)
Learn a probability
distribution p(y|x) I p([

Generative Model:
Learn a probability
distribution p(x)

Generative model: All possible images compete
with each other for probability mass

Conditional Generative
Model: Learn p(x|y) Model can “reject” unreasonable inputs by

assigning them small values

Slide credit: UMich EECS 498-007 5

Discriminative vs. Generative Models (cont’d)

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

P(gS | cat)
] P(F8|cat) P(#¥|cat) o (B8

| cat)

P([4 | dog)

P(| doe) P(## | dog)

P(E | dog)
I

Conditional Generative Model: Each possible
label induces a competition among all images

Slide credit: UMich EECS 498-007 6

Discriminative vs. Generative Models (cont’d)

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Recall Bayes’ Rule:

(Unconditional)
Generative Model

PGy = St PG

Prior over labels

Conditional
Generative Model

We can build a conditional generative
model from other components!

Slide credit: UMich EECS 498-007 7

Additional Remarks

* Discriminative Models
* Learn a (posterior)probability distribution p(y|x)
* Assign labels to each instance x
e Supervised learning

* Generative Models
* Learn a probability distribution p(x)
* Data representation, detect outliers, etc.
* Unsupervised learning

What Have Been Done
Using Deep Generative Models?

* Progress on synthesizing images (ImageNet)

Odena et a
2016

Miyato et al
2017

Zhang et al
2018

Brock et al
2018

Super-Resolution via Repeated Refinements (SR3) by
Class Diffusion Models (Google, 2021)

Slide credit: I. Goodfellow & SR3 9

Why We Need Generative Models?

* Remarks
* Able to process data information (e.g., priors like attribute, category, etc.)
for synthesis, prediction, or recognition purposes

* For example, with latent feature z derived from x,
one may have P(z) may describe image variants.

* Or,zin P(z) may annotate object categorical or attribute information.

X

Smi

L

Gender Gender Gender
Sketch Photo Paint «¥—m

* We will talk about a variety of visual applications based on
generative models later.

Liu et al., NeurIPS 2018 10

Taxonomy of Generative Models

Model can

compute p(x)/

Generative models

Explicit density

Can compute

e

Tractable density

Can compute p(x)
Autoregressive
NADE / MADE
NICE / RealNVP
Glow
Ffjord

approximation to p(x)

Model does not explicitly
compute p(x), but can

Nﬂple from p(x)

Implicit density

o

Approximate density

Markov Chain

¢

Direct

.

Generative Adversarial
Networks (GANs)

~

y,

Variational

Markov Chain

Variational Autoencoder

lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017

Boltzmann Machine

Take a Deep Look to Discover
Latent Variables/Representations

 Autoencoder

* Autoencoding = encoding itself with recovery purposes
* In other words, encode/decode data with reconstruction guarantees
* Latent variables/features as deep representations
* Example objective/loss function at output:
e L2 norm between input and output, i.e.,\m'uu '1(_ - 'K_ \(.

—> Encoder —»E—» Decoder —>

Original
input F}econstruzted
input
Compressed A
/{ representation
- most important information /y

—

of input image = latent space

Slide credit: W. Chiu 12

Take a Deep Look to Discover
Latent Variables/Representations (cont’d)

e Autoencoder (AE) for downstream tasks
* Train AE with reconstruction guarantees

* Keep encoder (and the derived features) for downstream tasks (e.g., classification)
* Thus, a trained encoder can be applied to initialize a supervised model

Loss function
(Softmax, etc)

/\

Reconstructed =
input data "E Predicted Label
Decoder Classifier
Features v Features A
Encoder Encoder
Input data Z Input data T

Slide credit: UMich EECS 498-007

Fine-tune
encoder
jointly with
classifier

13

Take a Deep Look to Discover
Latent Variables/Representations (cont’d)

 What’s the Limitation of Autoencoder?

Reconstructed

input

latent space

= ®
m ® Rwhat might it

. be? We wanna to have “distribution” (%)
Only samples, how about other where we can sample from any location
regions not covered?

m—:- Encoder —>E—o Decoder ﬁz
Conpressed
P tation
o
&
&

ariginal
input

Slide credit: W. Chiu 14

Taxonomy of Generative Models

Model does not explicitly

Model can Generative models compute p(x), but can
compute p(x)/ Nﬂple from p(x)
Explicit density 7~ o —— 1 Implicit density
Tractable density Approximate density Markov Chain Direct
g

Can compute p(x) a / GSN Generative Adversarial
- Autoregressive Networks (GANSs)
. NADE / MADE 4
- NICE / RealNVP Variational Markov Chain

Glow

Ffiord Variational Autoencoder Boltzmann Machine

lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017 15

Variational Autoencoder

* Probabilistic Spin on AE

* Learn latent feature z from raw data x
* Sample from the latent space (via model) to generate data

Sample from
conditional

po-(x | 20

Sample z
from prior

po~(2)

xZ

1'))

3

z

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

* p(x]|z)is implemented via a (probabilistic) decoder

Encoder

Decoder

94 (2[x)

Po(x|2)

Hz|z

z:mlzz

Decoder inputs z, outputs mean L,
and (diagonal) covariance 3,,,

\ 4

Sample x from Gaussian with mean

M, and (diagonal) covariance 3,,,

4

Slide credit: UMich EECS 498-007 16

Variational Autoencoder (cont’d)

e Remarks

Decoder
po(x|2z)

Train VAE via maximum likelihood of data p(x) K|z

Note that we don’t observe z & need to marginalize it:

pg(x) = fpg(x,z)dz - fpe(x|Z)P9(Z)dZ

We can compute Pg (x|z) with the decoder module,
and we assume Gaussian prior for pg(2)

However, can’t integrate over all possible z!
What else can we do? Recall that we have Bayes’ rule:

po(x | 2)py(2)
po(z | x)

We can’t compute pg(z | x) , but we can train the encoder module to learn

pe(x) =

4p(z | x) = pe(z | x)

Slide credit: UMich EECS 498-007

17

Decoder
po(x|2z)

Variational Autoencoder (cont’d)

* Again, we aim to maximize
o) = [P,)z = [o alIpo ()

we have... Decoder network inputs Encoder network inputs
latent code z, gives data x, gives distribution
distribution over datax over latent codes z

po(x|z) = N(ﬂx|ZJZx|z) th)(z | x) = N(ﬂz|x»£z|x)

(Halz | [Dgp | [Hzlz | By

< i

e |f we ensure 94z |x) = pe(z|x)
then we have (o) = P 2Pe (@) po(x | 2)p(2)
PO T T e %) 45z | %)

Slide credit: UMich EECS 498-007 18

Encoder Decoder

Training VAE T q4(z|x) z po(x]2) -
loEpial] = logpe(x | 2)p(2) _ " pe (X1 2)p(2)qe (2]%)
9 Pe(z | x) pe(z]x)gge(z|x)

s g (z]x)|

%(zlx)ll
B R rwerry

p(2)

= Eyqy (i [108 o (x12)] = Dis (5 @120, p(2)) + Dict (05 (2), po (21

= E,[logpe (x|2)] — E, llo

Data reconstruction KL divergence KL divergence between
between sample sample distribution
distribution from the from the encoder and
encoder and the prior the posterior of data

D 10gPe () = Ey—qy a1 [108P0 (x12)] = Dit (49 (21), p(2))

i.e., variational lower bound on the data likelihood py(x)

Slide credit: UMich EECS 498-007 19

Summary:
From Autoencoder to Variational Autoencoder

| Now is a “distribution”, we can assume it to be

a distribution easy to sample from, e.g. Gaussian

| X — f{:j”z

i\

Reconstructed

1(2)
assume p(z) = N(0,1) | Decoder
KLIN (X)), S(X)[JN(0. 1) ‘;)

Sample z from A (1(X), X(X))

Compressed
representation

original
input
-

z—» Encoder —ri—» Decoder —)-z

Slide credit: W. Chiu 20

Reparameterization Trick in VAE

 Remarks
* Given x, sample z from latent distribution (described by output parameters of encoder)
* However, this creates a bottleneck since backpropagation cannot flow through
* Alternatively, we apply 2 = u + o © £ (e simply generated by Normal distribution).

e This enables BP gradients in encoder through pand o,
while maintaining stochasticity via € (for generative model purposes).

u D ——
" Encoder s Decoder
o
e d
— Z=u+c0O¢
N(0,I) =" g

https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68 21

Implementation of VAE

x7or |

Wy, 00 = M(x),E(x) Push x through encoder
e~ N(0,1) Sample noise
Z=€0,;+ U, Reparameterize
xr = pa(x | 2) Push z through decoder
recon. loss = MSE(x, x;) Compute reconstruction loss

var. loss = —KL[N(u,, 02)||N(0,I)] Compute variational loss

L = recon. loss + var. loss Combine losses
'
I
Reparam. trick @
for differentiability v
@—b q(cncodcr)

SO SO Computed
analytically

Initialize parameters of encoder and decoder
Repeat:
Get mini-batch of X
mu_X, var_X = encoder(X)
€ = sampling from Normal(0, I)
z=mu_X + €*var_X
X' = decoder(z)
recon_loss = MISE(X,X')
latent_loss =
KLD(Normal(mu_X,var_X)| | Normal(0,1))
all_loss = recon_loss + latent_loss
all_loss.backward()
Until: parameters of encoder & decoder converge
Return parameters of ¢ncoder and decoder

First sample noise € from Normal(O,l),

then reparameterize z by mu_X + €*var_X,
(equivalently sampled Normal(mu_X, var_X)).
The model is now differentiable!

22

N ;m T2 m

\ 4

Po(x|2)

Before We Move On...

,w -

pe(x|2)p(2) _

pe (x|2)p(z)q4 (z]x)

logpg(x) = log log

pe(z | x) pe(z]x)

0 (2]x)

=E

z|logpe (x|2) g

1. (z|x | , Z.Xl
| ——lif[h)gfkég—l—gq + E. P(NIEELE—L—E

po(z

X)

= Eyqy 10108 P (x12)] = Dy, (44 (212),p(2)) + Dyt (4 (21x), po (21x))

» logpe(x) = Ez~q¢(z|x) [logpe(x|2)] — Dy (QQb (z|x), p(z))

i.e., variational lower bound on the data likelihood py(x)

Slide credit: UMich EECS 498-007

23

rd)

From Autoencoder to Variational Autoencoder (cont

* Example Results

e
DA MNANAAALEN NSNS
Q Qo ey by By BB 0hhhewewwwsw~
VAVt b bovwewww~~
QUVQY N n by by to te B Q020w -~
QOUOOVOININN K BDIVY DS - ——
QOOOMININin tn 0y GBS = - —
OO O MMM) M 0D 00 DD D P e o = —
OOODMMOMM MM N0 D D o e e —
QOOMMEE MM N 0N 00GD W e o e = = —
OQOMME e ¢ O 000000 e oo — —
QAP PP e oo~ ——
it " -~~~ =
iMoo oo~~~
A dodocorocoororrrTsoonr
SdadadddocrrrrrrFTTITRINN
SAdddddTrrrrrrrFFTITTRIRINN
SAddTTTrTrrrrrrrFERRRNN
hqqqqqqqq11?7??9????

*etEe e

4
*
-.‘.‘.
4
%
g

&I
&1
=
£

|

(b) Learned MNIST manifold

(a) Learned Frey Face manifold

24

Kingma et al., 2013

From Autoencoder to Variational Autoencoder (cont’d)

* Example Results
e A-A+B=F

Man Man Woman

with glasses

Woman with Glasses

Radford et al., 2015 25

What’s to Be Covered Today...

TRCAT SN
AR R ERS
| ﬂ’P J@' gr%, .
* Generative Models LN ke |
Q ; ' sy

* Generative Adversarial Network (GAN) 0z

nnnnn

d
~

Realworld -
images Resi
° Discriminator @— g
o
o
= 2 Fake
; 5 4 Generatol v
. T r
Random Noise Sample }- e,
€ p(E) z= g(e) :5_: Backprop error to
3

update discriminator
weights

26

From VAE to Generative Adversarial Networks (GAN)
PIER

Reconstructed

input

Now is a “distribution”, we can assume it to be
a distribution easy to sample from, e.g. Gaussian

assume p(z) = N(0,1)
\ KCLIN (XY, B(X)|V (0, 1) \

[| X — fl“:‘l”"

Decoder

()
A

entation

Sample = from N (p#(X'). ¥(X))

Compressed
t

Encoder

()

z—:» Encoder —>E—» Decoder —}Z

Original
input

P(m)

|

()

27

PIER
P(ﬂ

From VAE to GAN (cont’d)

+ Remaris ﬂm

* What if we only need the decoder/generator in practice?

 How do we know if the output images are sufficiently good?
| z T

—> Encoder —pi—» Decoder —>

original
input

Reconstructed
input

| just want to learn generator!
o3

o

latent generated image
code

might look like a fake image,
how to get it more realistic?

generated distribution true data distribution

B(x)

unit gaussian

generative

model

(neural net) Py Jloms) 2

image space image space 28

Slide credit: W. Chiu

Generative Adversarial Network

* |dea

* Generator to convert a vector z (sampled from P,)
into fake data x (from P¢), while we need P =P,

* Discriminator classifies data as real or fake (1/0)
* How? Impose an adversarial loss on the observed data distribution!

o

latent
code

discriminator

Héhﬁnghnage

Image credit: W. Chiu

29

Generative Adversarial Network (cont’d)

* Idea
* Impose adversarial loss on data distribution
e Let’s see a practical example...

generator: try to generate more realistic images to cheat discriminator
discriminator: try to distinguish whether the image is generated or real

latent
code

training image

Slide credit: W. Chiu

30

GAN (cont’d)

* Remarks
* A function maps normal distribution N(0,I) to P 4,
* How good we are in mapping F; to Pyg4t47?
e Train & ask the discriminator!
e Conduct a two-player min-max game

BV (D, G) = By 108 D(&)] + Earpa o) 081 — D(G(2)

evaluate the difference

Realworld —— between pdata(x) and pe(x)

images

Discriminator

Generator —— Sample

a Backprop error to

update discriminator
weights

Latent random variable
I —~
OQQ]

31

@ o real?
Training Objective of GAN i

discriminator

training image
* Jointly train generator G and discriminator D with a min-max game

Discriminator wants

Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
A A
(\ 4 \
m(jn max (Ex"’pdata [log D(X)| + E,~p(») [log (1 — D(G(z)))])
Generator Generated Discriminator \
Network

Y
Sample Network
Sample

Generator wants
z from p, G =

[Fake D(x) = 1 for fake data

B Ll

* Train G & D with alternating gradient updates

m(jn mﬁx V(G,D) Fortinl,..T:
' 1. (Update D) D = D+aDg—;
2. (Update G) G =G — aa%

Slide credit: I. Goodfellow

32

Training Objective of GAN (optional trick)

e Potential Problem

min max (Exwpdam[logl)(x)] tE,p) [108(1 - D(()))D

e At start of training, G is not OK yet (obviously);
D easily tells apart real/fake data (i.e., D(G(z)) close to 0).

e Solution:
* Instead of training G to minimize log(1-D(z)) in the beginning,
we train G to minimize -log(D(G(z)).
e With strong gradients from G, we start the training of the above min-max game.

] = log(1 - D(G(2))
4] ~log(D(G(2)))

0.0 0.2 0.4 0.6 0.8 1.0
D(G(2))

Slide credit: I. Goodfellow

Optimality of GAN

* Why the min-max game as objective a good idea?

min max (Ex_._,pdam[logl)(x)] +E, 5 [log (1 — D(G()))D

= min max(Ey-p,,,, [10g D ()] + Eyp, [log(1 = D(0)])

= minL mﬁ’;lx(pdam(x) logD(x) + log(l — D(x))) dx
f) =alogy + log(1 =)} f'(¥) =0 <y =——(local max)
a 4
f’(y) = =71 - Pdata(X)

y 1 —1y Optimal Discriminator: D (x) = ST

Slide credit: UMich EECS 498-007 34

Optimality of GAN

* Why the min-max game as objective a good idea? (cont’d)

min max (Exwpdam[log[)(x)] +E, pr [log (1 — D(G()))D

. pda!:a (x) P (x)
» mmL (p“““‘) log D+ o0 T PO e Ty (x)) dx

— min (E [logE Paata(X) + E [logg P () D
X~Pdata 2 pdata (x) + p (x) xX~p 2 pdata(x) + p (x)
. 2 * Pdata (x) 2% P (x)
=min| E, _ log] + E [log — 10g4)
(X~Pdata Pdam(x) +p (x) X~p Pdata(x) + p (x)

Slide credit: UMich EECS 498-007 35

Optimality of GAN
* Why the min-max game as objective a good idea? (cont’d)

min max (Ex,._,pdam log D(X)| + E, [log (1 — D((Z)))D

2 *xpe(x)
Paata(X) + pg(x)

2 * pdata (JC)] [
+ E. _ lo
Paata(X) + pg (%) e [108

+ v, + p-
— min (KL (pdata; pdataz p(}) + KL (pG‘pdamz p&) . log 4)

= min (E lo

X~Pdata [& B log 4)

generated distribution true data distribution
A

p(x)

Kullback-Leibler Divergence:

KL(P, Q) — Ex~p [1082E§;

unit gaussian

generative
model
(neural net)

._ |loss| .

image space image space

Slide credit: UMich EECS 498-007 36

Optimality of GAN

* Why the min-max game as objective a good idea? (cont’d)

min max (Exwpdam [log DCx)] + E, <y [108 (1 - D(G()))D

2 * Paata (¥) 2% pg(x)
= min (E - [log] + E. _ [log — lOg 4)
*Pdata pdata(x) +p (x) r pdata(x) +p (x)
+ +

— min (KL (pdam; pdataz p) + KL (p(;; pda.taz p) . log 4)

= min(2 * JSD(Paqata, D) — log4)
JSD is always nonnegative, and zero only jensen-Shannon Divergence:
when the two distributions are equal! 1 p+qy 1 p+q
Thus py.i. = Pg is the global min, QED JS$D(p,q) = EKL (p, 2) + EKL (q’ 2)

Slide credit: UMich EECS 498-007 37

Remarks on Optimality of GAN

min max (Ex~pdara [log D] + E<p(2) [log (1 = D0)))D

D
= min(z *]SD(pdataJp) - log 4)

* Summary
* The global min of the minmax game happens when

1. D;(x) = pdafjg)‘;‘fz(x) (Optimal discriminator for any G)
2. 9:(x) = Paara(x) (Optimal generator for optimal D) B
* Caution!

* Gand D are learned models (i.e., DNNs) with fixed architectures.
We don’t know whether we can actually represent the optimal D & G.

* Optimality of GAN does not tell anything about convergence to the optimal D/G.

Slide credit: UMich EECS 498-007

38

What’s to Be Covered Today...

il ﬂlg!--j““ e
P i\%?‘.'""““““r.lmlp“‘i Q"!!;!Mm“".iiii\
LY TN
* Generative Models =
) L
S :;
.] ?,¢ = ft o N
* Generative Adversarial Network (GAN) :::-Q 2
+ Challenges & Variants of GAN %ﬂm}} ST
Sy,

Realworld -
images Resi
° Discriminator @— g
o
o
= 2 Fake
; 5 4 Generatol v
. T r
Random Noise Sample }- e,
€ p(E) z= g(e) :5_: Backprop error to
3

update discriminator
weights

39

Deep Convolutional GAN (DC-GAN)

* Remarks
* ICLR 2016
* A CNN+GAN architecture
* Empirically make training of GAN more stable
Remove fully

Generator connected layer
3

Batchnorm &
RelU activation Fractional convolution

\ 1024
1007_«“] r::>4

Project and reshape

Stride 2 16

CONV 2

Deep Convolutional GAN (DC-GAN)

* Example Results

Collected face dataset

LSUN dataset

41

Conditional GANs

* Remarks
* |ICLR 2016
* Conditional generative model p(x|y) instead of p(x)

* Both G and D take the label y as an additional input...Why?
Why not just use D as designed in the standard GAN?

42

Conditional GANs

* Example Results

Miyato et al, “Spectral Normalization for Generative Adversarial Networks”, ICLR 2018 43

Problems in Training GANs:
Vanishing Gradients

* What Might Go Wrong?
* GAN training is often unstable.
* In other words, training might not converge properly.
* The discriminator which we prefer is...

44

Problems in Training GANs:
Vanishing Gradients (cont’d)

* What Might Go Wrong?

* The discriminator we trained might be as follows.
In other words, no gradient to guide the generator to output proper images.

0 0 0 1

* This is known as the problem of vanishing gradients.

45

Problems in Training GANs:
Mode Collapse

e Remarks

e The generator only outputs a limited number of image variants
regardless of the inputs.

N(0,]) — Generator

Mode collapse!

Problems in Training GANs:
Mode Collapse (cont’d)

e Remarks

* The generator only outputs a limited number of image variants
regardless of the inputs.

real data
- +« generated data

+
+¢ F;,.
e
+ T+'s g
g ++' + +
+ “t!-t"“‘
e R
4
e ;Y
+
Fa e 2
+ 4 T
L s
+ +‘¥ + + b’
it i o
e Rt +
++
+ +
;ng‘
b " .", '
* o :'h-..
iy
& + H
Foert; Photo credit:
ey
%

https://openreview.net/pdf?id=rkmu5b0a-

47

Problems in Training GANs:
Mode Collapse (cont’d)

* Why Mode Collapse Happens?
* The objective of GANs assesses the image authenticity, not diversity.

* Imbalance training between generator/discriminator
(exploding/vanishing gradients)

N(0,I) — Generator

Energy-Based GAN

* Energy Function

* Converting input data into scalar outputs,
viewed as energy values

* Desired configuration is expected to
output low energy values & vice versa.
* Energy Function as Discriminator
* Use of autoencoder; can be pre-trained!

* Reconstruction loss outputs a range of values
instead of binary logistic loss.

* Empirically better convergence

Photo credit: https://github.com/znxlwm/pytorch-generative-model-collections

real

fake

real

fake

fake

G(z)

e/

Z

49

EB-GAN

* Example Results

MSGAN

* Mode Seeking Generative Adversarial Networks
for Diverse Image Synthesis

* With the goal of producing diverse image outputs.

* To address the mode collapse issue by conditional GANs

MSGANSs

,,‘ or= m‘,,’
e A
LLL A A QA
ALLAALK

¢GANs

poaaa sl
FFPFFII

eathers that are

&&&h&&QLZ”

_____________ J L

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019 51

MSGAN (cont’d)

* Motivation (for unconditional GAN)

Real data Mode collapse Mode seeking
Y i
M2 P4 M:
p.q‘ M v : M4 P.ﬂ' M
4 4
M3
Mi » M

T et e T

d,(d1,,1,)

dz (Za 2 Zb)

0.68
0.58
0.62

» 0.17

Image space |

T 7\ %

Image data Latentcode Mode M Image I Zl 722 73
distribution _distribution Latent space Z

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019

52

4

MSGAN (cont’d)

* Proposed Regularization (for conditional GAN)

Conditional context

A

~ Image space |

G(c,zq)

Conditional >
Latent space Z Generative Model " di(G(c, 21), G(c, 22))
G ‘@
> G(C' Z2)
| D 4
d;(G(c,z), G(c, z,))
d,(z4,23)

53
Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019

MSGAN (cont’d)

e Qualitative results
e Conditioned on paired images

XIZX1d

NVOSI

Facades

I

NVOR[24d1

ul
B

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019

Dog-to-cat

Cat-to-dog

MSGAN (cont’d)

e Qualitative results
* Conditioned on unpaired images
DRIT
Input

57 -p i‘ l
P

1=

Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019

55

MSGAN (cont’d)

Qualitative results
* Conditioned on text (will talk about Vision & Language later this semester)

Input StackGAN++ MSGAN

) f
This colorful bird W ' ;
has an orange ; , : Y
abdomen, vent, .
and belly with a o4 ~
black crest, neck, . > ¢ q ‘ ; -
and nape. - 3 & ;
)
A small blue bird o y_ &
with a small head '
and pointed gray
i .
%} '. '_',‘
with a yellow \
belly and black s
wings. i

56
Mao et al. ” Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. ” CVPR 2019

Style-based GAN (if time permits)

* A Style-Based Generator Architecture for Generative Adversarial Networks (CVPR’19)
* Design style-based generator to achieve high-resolution image synthesis

* No particular designs on loss functions, regularization, and hyper-parameters

Karras et al. ” A Style-Based Generator Architecture for Generative Adversarial Networks. ” CVPR 2019

57

Style-based GAN (cont’d)

» Style-based generator

Latent z € Z

Normalize

| Fully-connected |

PixelNorm

| Conv3x3 |

b

PixelNorm
x4

l H
<
ESN

| Upsalmple I

| Conv 3x3 I

| Conv3x3 |

8x8

(a) Traditional

Latent z € 2)
Synthesis network g
[Normalize | [Const 4x4x512]
Mapping
network f

(ys,i: Yb,i

I Upsalmple I

[Conv3x3 |

(b) Style-based generator

Noise

: Affine transformation

: Per-channel scaling
factors to the noise input

X — (X4
AdaIN(x;,y) = ymT.()) + ¥Yb,is

where (ys'l-, yb’l-) are the outputs of Affine
transformation A

Mapping network & Affine transformations
- a way to draw samples for each style from
a learned distribution

Synthesis network
- a way to generate a novel image based on
a collection of styles

58

Karras et al. ” A Style-Based Generator Architecture for Generative Adversarial Networks. ” CVPR 2019

Style-based GAN (cont’d)

* Qualitative results

SinGAN:
Learning a Generative Model from a Single Natural Image

e ICCV 2019 Best Paper Award

e Remarks:
* Learning from a single image

* Handle multiple image manipulation tasks
* Super-resolution, style conversion, harmonization, image editing, et.

Super-resolution Animation

Paint to image Editing

r |

B

Training Image

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019

60

SinGAN:
Learning a Generative Model from a Single Natural Image

e Related Works

* While single-image based learning models exist,
most existing methods are designed to handle textural images but not natural ones.

Training Image

PSGAN

-

De

g S

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 61

SinGAN:
Learning a Generative Model from a Single Natural Image

* Goal

* Qutput images with arbitrary sizes and aspect ratios (via fully conv models)
by changing dimensions of noise and the input size

Single training image
T

Random samples from a single image
g T — .~

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 62

SinGAN:

Learning a Generative Model from a Single Natural Image

* Framework

fix kernel (receptive field) size at each scale:

min max ﬁadv(Gn, Dn) + aﬁrec(Gn) capture structures of decreasing size as we go up

n n

Fake

Real

IN-—1 I

<
:

G-
Gy |
el » Gy —

Mult-scale Patch |

—

Training Progression

Generator

add noise before Conv:
ensure that GAN does not
disregard the noise

A
(g1

Mult-scale Patch
Discriminator

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019

Effective
Patch Size

63

Inference Stage for SinGAN

Paint to image Super-resolution

down-sampled input I

Mult-scale Patch
Generator

<
=T}
]
£
—
=11}
o=
=
- —
~
St
o

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 64

SinGAN:
Learning a Generative Model from a Single Natural Image

* Random image generation

Training image Random samples from a single image

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 65

SinGAN:
Learning a Generative Model from a Single Natural Image

e Super-Resolution

LR training image

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 66

SinGAN:
Learning a Generative Model from a Single Natural Image

External
methods
i Su pe r—Re50| ution SRGAN | EDSR DIP ZSSR [SinGAN
NIQE 3.4 6.5 6.3 7.1 S

SRGAN (24. 865/3 640) EDSR (28. 367/8 083) DIP(27. 485/7 188) ZSSR (27. 933/8 455) SmGAN (26068/3 83 l)

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 67

SinGAN:

Learning a Generative Model from a Single Natural Image

Go
. [example
[] - - X J Py
Pa I nt to | ma ge : Image Injection scale | Total number of scales

. . Balloons| n="7 N=9
Input image Balloons2 n=>5 N=9
() fakogneis : Starry night n==06 N=38
G Eio et S R e Rock n="6 N=8
P ——rf Cycle GAN Tree n==6 N=8
Thousands of examples Birds n=>5 N=T
= & o View (Fig. 2, main text) n="7T N =28
Pyramids (Fig. 11, main text) n==6 N =28
> Y cows (Fig. 11, main text) n=2>5 N=T

Multi-scale

Generator

Training Example Input Paint Neural Style Transfer Contextual Transfer SinGAN (Ours)

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019

68

SinGAN:

Learning a Generative Model from a Single Natural Image

* Harmonization

Training Image

Input Image

Deep Paint. Harmonization

Image Injection scale | Total number of scales
Tree (also Fig. 2, main text) n=1 N=9
Two Dolphins (also Fig. 13. main text) n=23 N=9
Single Dolphin n=3 N=9
Fox n=2 N =8
Airplane n=2 N =8
Butterfly n=2 N =
Eagle n=2 N=8
Spaceship (also Fig. 13, main text) n=23 N=8
Hat n=4 N=9
Lemon n=3 N=T
Cat n=2 N=38
SinGAN (Ours)
69

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019

SinGAN:
Learning a Generative Model from a Single Natural Image

Image Injection scale | Total number of scales
Rockl n=>5 N=T
« Editin Rf)ck2 . n=>5 N=T
g Rock3 (also Fig. 12, main text) n=>5 N=T7
Tree n="7 N=9
Mountain n=4 N=38
Red cliff n=>5 N=9
Hay n=~6 N=9

Shaham et al., SinGAN: Learning a Generative Model from a Single Natural Image, ICCV 2019 70

What’s to Be Covered Today...

L Rl .
S 'd! ﬂ’ylt JJ il '-ll!!% h
o \ ‘\4 g ; 4 U
* Generative Models { 1 e =

nnnnn

~i

P ﬂ
Diffusion Model %@m}ﬂw

5507

Discriminator @;

Fake
Generator ample v
Backprop error to

update discriminator
weights

Random Noise
€ ~ p(e)

8 w
I 5
29
m @
N
Latent random variable

71

From VAE to Diffusion Model

GAN: Adversarial
training

VAE: maximize
variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

Generator

Y

G(z)

¢ (2(x) i po(x|z) |
Xo— X1 X2 — R

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

72

Denoising Diffusion Models

 Emerging as powerful generative models
* Unconditional image synthesis
* Conditional image synthesis
* OQOutperforms GANs

Diffusion Models Beat GANs on Image Synthesis, Cascaded Diffusion Models for High Fidelity Image
Dhariwai & Nochol, OpenAl, 2021 Generation, Ho et al., Google, 2021

Slide credit: Kreis, Gao, & Vahdat 73

Denoising Diffusion Models

 Emerging as powerful generative models
* Unconditional image synthesis
* Conditional image synthesis
* OQOutperforms GANs

DALL-E 2 Imagen

A group of teddy bears in suit in a corporate office celebrating
the birthday of their friend. There is a pizza cake on the desk.

“a teddy bear on a skateboard in times square

Diffusion Models Beat GANs on Image Synthesis, Cascaded Diffusion Models for High Fidelity Image
Dhariwai & Nochol, OpenAl, 2021 Generation, Ho et al., Google, 2021

Slide credit: Kreis, Gao, & Vahdat

74

Denoising Diffusion Models:
Learning to generate by denoising

* 2 processes required for training:
* Forward diffusion process — gradually add noise to input

* Reverse diffusion process — learns to generate/restore data by denoising
(typically implemented via a U-net)

* Comments about noise scheduling (see next slide)

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Slide credit: Kreis, Gao, & Vahdat 75

Denoising Diffusion Models:

Learning to generate by denoising (cont’d) ® I §
Vv, o2 ¢
* Forward diffusion process /4> \
o oo M l———

* Gradually add noise to the input in T steps Voos

* Recall that x, denotes clean input image, and x; is the final noisy one.

¢ Comments on q(x,|x,,)

Forward diffusion process (fixed)
Data Noise
Xy X Xo X3 Xy X
~—— Y~ ~— A ~— A~
N N N i i N
Uov't;d Mmea .
- T.
L s \/ / -
q(x¢|x—1) = N(x¢; V1 — Bixe—1, 5I) = q(X17|X0) = Hq(Xf|Xt-1) (joint)
t t=1
ow ‘“.t variance schedule
(hyperparameter)
76

Slide credit: Kreis, Gao, & Vahdat

Denoising Diffusion Models:
Learning to generate by denoising (cont’d)

* Forward diffusion process

* Gradually add noise to the input in T steps (cont’d)

e Diffusion kernel

* So what happens to data distribution during this process?

Diffused Data Distributions

Data Noise
q(xt) = /Q(Xtyxt) dx) =
— —
Diffused Joint
data dist. dist.

axg) alx) alx) alxs) q(xr)

Slide credit: Kreis, Gao, & Vahdat

/ a(x0) g(xefx0) dxg

e

The diffusion kernel is Gaussian convolution.

Denoising Diffusion Models: % |7+ NoxXx, S v, (oD

Learning to generate by denoising (cont’d)) \"Q" Ke-t 4J§2
= Be X4 e, &
* Forward diffusion process = Jre e, 2, P

* Gradually add noise to the input in T steps

£ fl-oxeme €
e Diffusion kernel:

Forward diffusion process (fixed)

Data Noise

de = 1-6t 2
AR
Defing oy = H(l — Bs) = q(x¢|xp) = N(x¢; Vagxg, (1 — ap)l)) (Diffusion Kernel)
s=1

For sampling: Xt = v/ay xp + /(1 —ay) e where € ~ N(0,1)

(¢ values schedule (i.e., the noise schedule) is designed such that a; — 0 and g(xp|xg) ~ N (x7;0,1))

Slide credit: Kreis, Gao, & Vahdat 78

Denoising Diffusion Models:
Learning to generate by denoising (cont’d)

* Generative learning by denoising
* Diffusion parameters are designed such that: q(x7) =~ N(XT; 0,1))

Diffused Data Distributions

Generation:
Xt Sample xp ~ N (xp;0,1)

% x Ilteratively sample X;—1 ~ q(X¢—1|X¢)

- >
—

True Denoising Dist.

a(xelx;) a(xq[x0) a(x,x3) a(x;lxy) (X |x7)

* Unfortunately, Q(Xt—1|Xt) X Q(Xt—l)Q(Xt|Xt—1) is intractable.
We approximate q(xt_l]Xt)' by Normal distribution by setting small B, in each step

Slide credit: Kreis, Gao, & Vahdat 79

Denoising Diffusion Models:
Learning to generate by denoising (cont’d)

* Reverse diffusion process
* Learnto denoise in T steps
* Let the model 8 predict Po(X¢—1|%¢) = N (x¢—1; pro(Xe, 1), Lo(x¢, 1))
* To conclude the learning process first, we need to predict the noise in image.

_ Reverse denoising process (generative)

A

Data Noise

A A A A A A

p(xp) = N(x7;0,1) L
T) — 7Y, _
= po(xo7) = p(x7) | | Po(x—1]%2)
Po(Xt—1]x1) = N (x¢—1; (x4,), 071) H
%K_/

Trainable network
(U-net, Denoising Autoencoder)

Slide credit: Kreis, Gao, & Vahdat 80

Learning of Diffusion Models

o| log py(x) > variational lower bound

VAE
qylz | x) pex | 2)
— sampl — M, sample A~
— — — Decoder —_
X g | ec g
Diffusion Model fixced
» "-..'-..-—‘-.
forward “encoding”
X i S — Z
' xO — 'xl " e T— Xt ‘
(observation) (latent)

(1] . (]
reverse (tL"'L”R'JEh ng

log py(x) > variational lower bound

Slide credit: Kreis, Gao, & Vahdat 81

Ref: https://youtu.be/HoKDTa5jHvg

VAE

Learning of Diffusion Models e

Diffusion model

‘ forward “encoding”

o| log py(x) > variational lower bound

Xo — Xy — -« —/— Xt

* Recall that we exploit variational bound for optimizing VAE models

logpe (%) = E;-q, (21 [108 P (x12)] = Dy, (44 (21),p(2))

Po\Xo:T
VS. Eq(xo) [— logpg(xo)] E Eq(Xo)q(XlzT\Xo) {— log (0) = L

Q(X1:T|X0)

+.0673>
(- 7 VK<, >'€
N (/)9

L =E, | Dxu(g(xr|x0)llp(xr))+ Y Drrlg(xi—1|xe,%0)|[po(xi—1[%:)) = 10gpﬁ(XuX1)l]

P t>1 é L1 Lo
Cou Yqwove. Wiy J " Y 1
o (:V‘OV . h" ‘ N ('X-(-,')' /At('xt ’XO) ,?1)

* In Ho et al. NeurlPS’20, it is shown that

_ /)___ \)
LT AR el As) PV LA BV L

L L
-~ (Xe-773, € (slrda #98)

82

Learning of Diffusion Models (cont’d)

Not trainable

* Recall that | _ E, [_-1— > Dxr(a(xe-1|x:,%0) | Pe(xt—llxt)lj-]

Lt Ly Lo

e Still working on it...
* Only care about KL divergence between two Gaussian distributions

q(xXi_1|x0) ™ Py
q(x¢—1|x¢, x0) = q(x¢|x¢-1,%0) (xe-1/x0) =N/ (’\(1_.;})\{ (xXt,7%0)) ?fl)
q(x¢|x0) g

-(

Po(x,—1 | x) == N (x_y;5 (X D), ZfX, 1) A S—
(- =€) ()

P TN TS
learned fixed (Acf\AJ /f‘)

| — ¢ (Kertr))
T:t(X< - Ny 0 (X (Yv-eé?cj'e" fl')

* Asaresult,

A 2 E
LS¢ I - w) —7

B7
012020, (1 — @)

* For simplicity, we calculate

Leimple (0) = Ey 5, ¢ “le — €o(Varxo + V1 — (q€,t) Hz}

He — eg(vauxg + V1 — e, t)H‘!]

Slide credit: Kreis, Gao, & Vahdat
and https://youtu.be/HoKDTa5jHvg 83

Learning of Diffusion Models

* Summary
* Training and sample generation
Algorithm 1 Training Algorithm 2 Sampling
;1 repeat xo) 1: x7 ~N(0,1)
- Xo ™~ q\Xo 2: fort=1T,...,1d
3: t~ Uniform({1,...,T}) o e s OO
4 e~N(0,I) 3z~ N(OD
5: Take gradient descent step on 4 Xe-1 = \/L—t (xt - %59 (xt,t)) + oz
Vo ||€ — ea(vaixo + /1 — ace t)||2 5: end for
6: until converged 6: return xo
Forward diffusion process (fixed)
Data Noise
X X1 X9 X3 X4 s X7
S S Y ~ A ~ A~ A~ ~___
\ /
~ Reverse denoising process (generative)
Data Noise

Lo A A A A A

Slide credit: Kreis, Gao, & Vahdat

Learning of Diffusion Models

* Summary
* Training and sample generation
Algorithm 1 Training Algorithm 2 Sampling
;; repeat xo) 1: x7 ~N(0,1)
- Xor~ g{Xo 2: fort=1T,...,1d
3: t~ Uniform({1,...,T}) 3 0er N((’] I °
4: e~N(0,I) ’ -
5: Take gradient descent step on 4 Xe-1 = \/}x—t (xt - hee (xt,t)) + oz
Vo ||e — eov/@xo + v1— acelt)||” 5: end for
6: until converged 6: return xo

i APPSR SIS

2 P T e e @ e e e

R RO EIEIEIES

G I D e e e g g g g g
EEEEYIAEEYER LR NARRN

Slide credit: Kreis, Gao, & Vahdat

https://medium.com/ai-blog-tw/%E9%82%8A%ES%AF%AE6%EA4%BD%ICHEI%E2%8A%ES%ADKBEWET7%BF%92diffusion-model-

More steps
%ES%BE%IEddpm%E7%9A%84%E7%B0%A1%ES%8C%I6%E6%A6%82%ES%BF%B5%E7%90%86%E8%A7%A3-4c565a1c09¢

What We’ve Covered Today...

PN i Ul
Il@@!ﬁf}ﬂ”g% \
* Generative Models L\ eh
e Auto-Encoder vs. Variational Auto-Encoder %é’J{—/ e =
* Generative Adversarial Network (GAN)
« Diffusion Model 4%&4;_'"%}}

e HW #1 is due Oct. 10th Mon 23:59
e HW #2 will be out next week...

Realworld -
images Real
f Discriminator @— g
O Fake
/

Generator

Random Noise
€ ~ p(e)

Backprop error to
update discriminator
weights

Latent random variable
‘

86

