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A Practical Segmentation Task

Semantic Segmentation
* Supervised learning

» Assign a class label to each pixel in the input image (i.e., pixel-level classification)

* Not like instance segmentation, do not differentiate instances;
only care about pixel labels




Semantic Segmentation

e Fully Convolutional Nets

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv

Conv argmax

—

Input: J .
3xHxW Y Scores: Predictions:

CxHxW HxW

Sroblem: i Convolutions:
roblem: convolutions at DxHxW

original image resolution will
be very expensive ...



Semantic Segmentation

* Fully Convolutional Nets (cont’d)

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277
convolution

Med-res: Med-res:
D?_ x H/4 x W/4 D2 X Hi4 x W/4

i

Low-res:
D3 X H/4 x W/4

High-res: High-res:
3xHxW D, xH/2 x W/2 D, xH/2xW/2

Predictions:
HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
MNoh ef al, “Leaming Deconvolution Network for Semantic Segmentation”, ICCV 2015



In-Network Downsampling

* Revisit: Learnable Downsampling: Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Dot product
between filter
and input

Qutput: 2 x 2

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between
movement in input and
output



In-Network Upsampling

* Transpose Convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

Other names:
-Deconvolution (bad)

-Upconvolution
-Fractionally strided
convolution
-Backward strided > Filter moves 2 pixels in
convolution Input gives the output for every one
weight for pixel in the input
filter

Stride gives ratio between
movement in output and
input

Input: 2 x 2 Qutput: 4 x 4



In-Network Upsampling

* Transpose Convolution
1D example

Input

a
b

=

.

/
\

Output

ax

ay

az fHbx
by
bz

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2x input



In-Network Upsampling

* Transpose Convolution
e Example as matrix multiplication

o B e I s

We can express convolution in
terms of a matrix multiplication

SRR

2w s O

rTxa=Xa
n
0 0] |a
0 0 (o] _
r 0 |e|
y x| |d
_0_

ay + bz
ar + by + cz
br + cy + dz

cx + dy

Example: 1D conv, kernel
size=3, stride=1, padding=1

Convolution transpose multiplies by the
transpose of the same matrix:

= XTg

oo R

ZxL

cone R O
OSCn@ &g ©C
ne 8 oo o

-

Q|

A, O o8

|

ax
ay + bx

az + by + cx

bz + cy +dzx
cz + dy

dz

When stride=1, convolution transpose is
just a regular convolution (with different

padding rules)




Fully Convolutional Networks (FCN)

e Remarks
 All layers are convolutional
* End-to-end training

Downsampling: Design network as a bunch of convolutional layers, with Bﬁsggliiﬂ;l%:strided

) : : ina inei 1
Pooling, Istrlded downsampling and upsampling inside the network! transpose convolution
convolution

Med-res: Med-res:
D2x H/4 x W/4 D2x H/4 x W/4

f

Low-res:
D3 X H/4 x W/4

High-res: High-res: Predictions:
3xHxW D, x H/I2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”®, CVPR 2015
MNoh et al, “Leaming Deconvolution Metwork for Semantic Segmentation”, ICCV 2015 10



Fully Convolutional Networks (FCN)

* More details
* Use transpose convolution to upsample pixel-wise classification results
* Adapt existing classification network to fully convolutional forms
* Remove flatten layer and replace fully connected layers with conv layers
e Append 1 x 1 conv layer with channel dims to predict scores for each class

Upsampling via deconvolution

forward /inference

backward /learning

“tabby cat”
: hﬁ@_a_e_e
“ Jo PPN o0l o :
gﬁ

\

convolutionalization

; tabby cat heatmap »

0,00
s %R

11



Fully Convolutional Networks (FCN)

32x upsampled
image convl pooll conv2 pool2 conv3 pool3 conv4d pool4 convs pool5  conv6-7 prediction (FCN-32s)

16x upsampled

2 7
* conv prediction (FCN-16s)

poold ’_'_

8x upsampled

4x conv7 prediction (FCN-8s)
2x poold [ [ ]
poold [ [ ] |
32x upsampled
image pooll pool2 poald ponld poold prediction (FCN-32s)

poold  2x upsampled 16x upsampled

prediction prediction prediction (FCN-16s)

FECN-32s  FCN-16s FCN-8s  Ground truth

8x upsampled
prediction (FCN-8s)

12



Fully Convolutional Networks (FCN)

* Example
* VGG16-FCN32s
* Loss: pixel-wise cross-entropy

i.e., compute cross-entropy between each pixel and its label, and average over all of them

Input

\ 4

VGG16 (Pretrained)

\ 4

Coarse prediction

\ 4

shape: 256 x 256

shape: 8 x 8

Upsample 32x (transpose conv)

\ 4

Pixel-wise prediction

shape: 256 x 256

13



SegNet

e Efficient architecture (memory + computation time)

e Upsampling reusing max-unpooling indices

e Reasonable results without performance boosting addition
e Comparable to FCN

Convolutional Encoder-Decoder

Output

Pooling Indices _ k.

A

RGB Image

I conv + Batch Normalisation + RelLU Segmentation
I Pooling I Upsampling Softmax

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” [link]

14


https://arxiv.org/pdf/1511.00561.pdf

U-Net (Ronneberger et al., MICCAI'15)

* Remarks

* In biomedical image segmentation, localization is critical,
in other words, precise semantic segmentation is desirable

* Plus, # of training images might not be sufficient.

a b
™
y.- L
,ﬁ i |"_H. !
\" ~ ':3 E’b‘l
e, S

15



U-Net (cont’d)

1 64 64
128 64 64 2
input
. output
Image i .
tgille il - e : segmentation
& 5 map
| Of «© 2 i
N E: § 2
ol of =
b B B
’ 128 128
256 128

2842
2802

' 256

2002

1982

256

=»conv 3x3, RelLU
=& copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» cONv 1x1

512 512

U-Net: Convolutional Networks for Biomedical Image Segmentation [link]

16



Additional Remarks:
Elastic Deformation for Pre-processing

* Data augmentation is crucial for U-Net (and more DL models)

 Elastic deformation allows manipulation of medical images & GT seg maps

ot comrespondingly deformed
ol ) A Y manual labels

‘;t...-'. = 4 i '-_Jr # | *

resulting deformed image
(for visualization: no rotation, no shift, no extrapolation)

Code: elastic distortion.py 17



https://github.com/zomux/deepy/blob/master/deepy/preprocessing/elastic_distortion.py

Additional Remarks:
Enhanced Spatial Information

* For semantic segmentation,
spatial information is of great importance

* |tis desirable for the model to observe
* Both the target pixel and its neighboring areas
* Recall: Atrous (or dilated) convolution

* Features across different scales should be considered
e Spatial Pyramid Pooling

18



Revisit of Dilated Convolution

* Atrous (Dilated) Convolution

e Larger receptive field with the same kernel size
(e.g., a 3x3 kernel depicted below with different receptive field)

19



Spatial Pyramid Pooling (SPM)

 Goal:

* Integrating information viewed under different scales

fully-connected layers (fcg, fc;)

t

fixed-length representation

A
4 N\

% 16x256-d 4 4x256-d 4 256-d

[l [/ /[ /L /S
VAR AR AR A4
[l /[ [/ /

///\//

J
spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

ﬁ convolutional layers
input image



Thus, we have...

* Atrous Spatial Pyramid Pooling
e Combines both techniques for producing enhanced spatial info

rate = 6 raﬁﬂ
g
] B
]l ] []
b, E—

Input Feature Map

21



DeeplLabv3+

ROLLLLLLLECEEU UL PO EUEEEEU TRV EUE LT UL EREL LR LRIy y p v e s e U LU T LU LU L O LU LU L LRI T LU »,

ﬁ —

Encoder
3x3 Conv

rate 6

SN
/

DCNN
Atrous Conv

3x3 Conv
< rate 12

'
N\
-

A\

3x3 Conv l
rate 18
Image 4 @
Pooling  —
Upsample
Low-Level pb;; 4p <

Features Prediction

" l
1x1 Conv —» 4_,@_, o

Chen et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation," ECCV 2018

22



What'’s to Be Covered Today...

* Object Detection

Y

s
7
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23



Roadmap

Classification Object Detection Instance

Classification

+ Localization

Segmentation

X TR

CAT, DOG, DUCK CAT, DOG, DUCK

A J/
Y

Single object Multiple objects

Slide from A. Karpathy 24



Object Category Detection

* Focus on object search: “Where is it?”

* Build templates that quickly differentiate object patch from background patch

Object or
Non-Object?

25



General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Gradient/region based or CNN features,

SCO e Hypotheses usually based on summary representation

with classification/voting results

Rescore each proposed object
based on the entire candidate set

Resolve Detections

26



Challenges in Modeling the Object Classes

Clutter

Occlusion Intra-class appearance Viewpoint

27

Slide from K. Grauman, B. Leibe



Challenges in Modeling the Non-object Classes

True
Detection

Bad
Localization

Confused with
Similar Object

Al )

Confused with

Misc. Background Dissimilar Objects
Soe

28



{ Level 4
Blurand #1716 resciution

subsample &  Levels
Blur and 1 1/8 m=olufion

Type of Approaches e e

subsample i
Blur and }
subsample

Level 1
1/2 resolution

* Sliding Windows
» “Slide” a box around the input image

Level O
Crriginal
image

* Classify each cropped image region inside the box
and determine if it’s an object of interest or not

 E.g., HOG (person) detector by Dalal and Triggs (2005)
Deformable part-based model by Felzenswalb et al. (2010)
Real-time (face) detector by Viola and Jones (2001)
* Region (Object) Proposals
* Generate region (object) proposals
* Classify each image region and determine it’s an object or not

29



Type of Approaches (cont’d)

* CNN-based Methods

“\What” Correct label:
Cat J
Fully Class Scores
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01 l
Weighted Loss
Sum
Treat localization as a 4096 ggggctacc)tjd: Box _ — L2 LossS
regression problem! Coordinates ‘
(x, y, w, h)
“Where” Correct box:

(x’, ¥, w’, h')

Slide credit: UMich EECS 498-007 30



Before the Rise/Resurgence of CNN:

The HOG Detector

* Histogram of Oriented Gradients

 Sliding window detector find objects in 4 steps:

Inspect every window
Extract features in window
Classify & accept window if score > threshold

Clean-up (post-processing) stage

Detection window

31



e Step 1: Inspect every window
* Objects can vary in sizes, what to do?
* Sliding window + image pyramid!

Scale-space pyramid

?

Detection window

32



e Step 2: Extract Features in Window
* Histogram of Oriented Gradients (HOG) features

e Similar to SIFT in some ways...

e ever heard of SIFT?

Compute
gradients

I_,

Weighted vote
into spatial &
orientation cells

Contrast normalize
over overlapping
spatial blocks

33



e Step 2: Extract Features in Window
e Histogram of Gradients (HOG) features
e Ways to compute image gradients...

Mask 1D iD
Type uncent I cubic-c ted 2x2 diagonal 3x3 Sobel
'_u ]_' —1 ﬂ ]
-1 0 -2 0 2
-1 01
Operator [-1,1] [1,-8,0,8,-1] -1 0] -1 =2 -1
|0 1] 0 0 0
1 2 1
Miss rate
at 1074 12.5% 12% 12.5% 14%
FPPW

(Miss rate: smaller is better)

This gradient filter gives the best performance

34



Step 2: Extract Features in Window

* Divide the image into non-overlapping cells (grids) of 8 x 8 pixels

* Compute a histogram of orientations in each cell,
resulting in a 9-dimensional feature vector.

Compute Weighted vote Contrast normalize
adi —> into spatial &  —>| over overlapping
gradients : A %
orientation cells spatial blocks

o
| ||
'_{L I—’d\”l ! P

@ 1 1e” Ef1- Onemkottion



e Step 2: Extract Features in Window

* We now take blocks, where each has 2 x 2 cells, for HOG normalization.

Compute
gradients

Weighted vote
into spatial &
orientation cells

Contrast normalize .
—> over overlapping
 spatial blocks

block (2x2 cells)



* Step 2: Extract Features in Window

* We now take blocks, where each has 2 x 2 cells, for HOG normalization

* Normalize each feature vector, such that each block has unit norm.
This does not change the dim of the feature, just the magnitude.

Compute Weighted vote Contrast normalize
gradients —>»| into spatial & — overoveﬂappi_ng
orientation cells spatial blocks

Cell —

Block ~>

Overlap

of Blocks

Feature vector f=1 ..., ..., ..]

L2 normalizationin f — f
each block: \/||f\ 2 + €2

37



e Step 2: Extract Features in Window

e Each cell isin 4 blocks thus has 4 different normalizations;
we make each as a feature representation.

* For each class of person, window is 15 x 7 HOG cells.
* We vectorize each the feature matrix in each window.

# orientations
# features = 15 x 7 X 9 x 4 = 3780

# cells # normalizations by
neighboring cells

Final descriptor for window
(person class in this case)



» Step 3: Detection (classify & accept window if score > threshold)
* Train a window classifier (e.g., linear or non-linear classifiers)
* Use the trained classifier to predict presence of object class in each window

Tral Predict presence/absence
Sk f object class in each
classifier il
image window

positive training examples

negative training examples

Train classifier. SVM (Support Vector Machines)
is typically used.

39



» Step 3: Detection (Classify & accept window if score > threshold)

* During testing, compute the score w'x+b in each location, which can be viewed as
performing cross-correlation (or convolution) with template w (and add bias b).

score(l, p) = w - (!, p)

4

Image pyramid HOG feature pyramid

40



e Step 4: Cleaning-Up

* Perform a greedy algorithm of non-maxima suppression (NMS)
to pick the bounding box with highest score

Non-maxima suppression (NMS)

area(boxq n box remove
overlap = (bos 2) > 0.5 [ bo- ]
area(box v boxs) OT2

* Remove all boxes that overlap more than XX (typically
50%) with the chosen box

41



* Evaluation

* loU (intersection over union)
* E.g, detection is correct if loU between bounding box and ground truth > 50%

area(B, N Bgt)

dq0 —

area( B, U Bgt)

42



e Evaluation
e |OU (intersection over union)
* Mean IOU (mIOU): average IOU across classes
* Precision and Recall
* Sort all the predicted boxes according to scores, in a descending order

* For each location in the sorted list,
we compute precision and recall obtained when using top k boxes in the list.

1
#correct boxes B A
recall = —
#ground-truth boxes c
7
)
. D
. “correct boxes o
recision = — _
: #all predicted boxes
0

recall

43



* Evaluation

* Precision and Recall

. True Positive True Positive I
Precision = B — ar . "
Predicted Results True Positive + False Positive True False
- Positive Positive
2
True Positive True Positive 5 *
acall B \ctual Recults or T Positive + False Negati E
Actual Results rue rositive dlse Negative False True
Negative Negative
Ac True Positive + True Negative '
curacy =
Total Actual

44



Evaluation
* loU (intersection over union)
* Precision and Recall
* Average Precision (AP):
* Compute the area under P-R curve
* mean Average Precision (mAP): average of AP across classes

o9

o8F

OTH

0sp

osr

04 - — .-+

precision

03 -l —_——

02p AP

BiF

0 01 02 03 04 0s 08 or o 08 1

recall



Something to Think About...

* Sliding window detectors work
* very well for faces
* fairly well for cars and pedestrians
* badly for cats and dogs

 Why are some classes easier than others?



Recall that

* Visual Features derived by Convolutional Neural Networks

FEATURE MAPS FEATURE MAPS

QuUTPUT

Full Conmection
32x32x3 16 % 16 % D 1=1=10

- 192 128 2
3 N7, 13 \ | \3
224 e o o L
). = TE 13 dense’| |defse
L\ | " i
v ’ 192 128 Max
24\lstrid
of 4

32x32xD 2x32=xD

8 ense

— I“é g

L
o
5
o

. 2048
Max 128 Max pooling

3 48

47



CNN as Feature Extractor

Image credit: Justin Johnson

48



CNN as Feature Extractor

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

==, Dog? YES
=== Cat? NO
7, Background? NO

gggggg

49

Slides by Justin Johnson



CNN as Feature Extractor

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

= = Dog? YES
el — Cat? NO
i\ — Background? NO

50

Slides by Justin Johnson



CNN as Feature Extractor

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

J Dog? NO
Cat? YES
Background? NO

51
Slides by Justin Johnson



CNN as Feature Extractor

 What could be the problems?

e Suppose we have an image of 600 x 600 pixels.
If sliding window size is 20 x 20,
then have (600-20+1) x (600-20+1) = ~330,000 windows to compute.

* What if more accurate results are needed,
need to perform multi-scale detection by
* Resize image
* Multi-scale/shape sliding windows

* For each image, we need to forward pass image regions through CNN
for at least ~330,000 times. -> Slow!!!



Recap: CNN for Object Detection

* Need to deal with more than one object
e How?

“\What” Correct label:
Cat l
Class Scores
Fully
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01 {
Weighted Loss
Sum
.. 4096 Connected: BOX . ‘
Treat localization as a 2096 10 4 L2 Loss

Coordinates
‘ (x,y, w, h)

regression problem!

T

Correct box:
(X’I y” W’I h’)

“Where”

Slide credit: UMich EECS 498-007

53



Two-Stage vs. One-Stage Object Detection

Methods
( Sliding Windows
( R-CNN
Fast R-CNN
Two-stage Frameworks -« Mask R=CNN
4 \ :
( YOLO
YOLOvV2
One-stage Frameworks - YOLOV3
\ L

54



Region Proposal

e Solution

* Use pre-processing algorithms to filter out some regions first,
and feed the regions of interest (i.e., region proposals) into CNN

* E.g., selective search

55

Uijilings et al. IJCV 2013



R-CNN (Girshick et al. CVPR 2014)

] warped region

aeroplane? no.

person? yes.

Pl (/L e v\ L S | tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

Replace sliding windows with “selective search” region proposals
(Uijilings et al. 1JCV 2013)

Extract rectangles around regions and resize to 227x227 pixels

Extract features with fine-tuned CNN
(e.g., initialized with network pre-trained on ImageNet)

Classify last layer of network features with linear classifiers (e.g., SVM/MLP),
and refine bounding box localization (bbox regression) simultaneously

http://arxiv.org/pdf/1311.2524.pdf 56



http://arxiv.org/pdf/1311.2524.pdf

R-CNN (Girshick et al. CVPR 2014)

] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

* Ad hoc training objectives:
* Object class: Fine-tune network with softmax classifier (log loss)
* Object class: Train post-hoc linear SVMs for each class (hinge loss)
* Bbox location: Train post-hoc bounding-box regressors (least squares loss)

* Training is extremely slow with lots of disk space.

* Implementation/testing cannot be done in real time.

http://arxiv.org/pdf/1311.2524.pdf

57


http://arxiv.org/pdf/1311.2524.pdf

Bounding Box Regression

* [ntuition

* If you observe parts of an object, according to the seen examples,
you should be able to predict/refine the localization.

* E.g., given the red bounding box below, since you’ve seen many airplanes,
you know this is not a good localization, you will adjust it to the green one.

58



R-CNN (Girshick et al. CVPR 2014)

* What could be the problems?

* Repetitive computation!
For overlapping regions, we feed it multiple times into CNN

warped region 7 aeroplane? no.
, ,

person? yes.

1T & .
8 { ‘ u . ]

| % g w0 SN | tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

59



Fast R-CNN (Girshick ICCV 2015)

e Solution

* Why not feed the whole image into CNN only once?
* Then, crop the feature map instead of the image itself

Rol
pooling
layer |

N\

https://arxiv.org/pdf/1504.08083.pdf

Outputs: hbox
softmax regressor

iizli E:Eijiz

FCs

Rol feature

VECtD r Far each Ral

60


https://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN (Girshick ICCV 2015)

e Solution

Softmax
classifier

Linear +
softmax

Linear

1

Bounding-box
regressors

Fully-connected layers

L ,—7 /7 “RolPooling” layer

Regions of %&M “conv5” feature map of image

Interest (Rols)
from a proposal
method

ConvNet

Forward whole image through ConvNet

Input image

https://arxiv.org/pdf/1504.08083.pdf 61



https://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN (Girshick ICCV 2015)

* How to crop features?

* Since we have fully-connected layers, the size of feature map
for each bounding box should be a fixed number

Rol
pooling

N\

layer E I

Outputs: hbox
softmax regressor

EFC I?FC

FCs

Rol feature

VECtD r Far each Ral

62



Fast R-CNN (Girshick ICCV 2015)

 How to crop features?

» Resize/Interpolate the feature map as fixed size?

* Not optimal. This operation is hard to backprop.
-> we cannot train the conv layers in CNNs...

Rol

ing

N\

| HH

Outputs: hbox
softmax regressor

EFC I?FC

FCs

Rol feature

VECtD r Far each Ral

63



Fast R-CNN (Girshick ICCV 2015)

 How to crop features?

* Rol (Region of Interest) Pooling
* How?

64



Rol Pooling

* Step 1:
Get bounding box for feature map from bounding box for image

* Due to the (down)convolution/pooling operations,
feature map would have a smaller size than the original image.

-
-
-
-
-
-
-
-l
=
-
-
[
1

Feature map

65



Rol Pooling

* Step 2:
Divide cropped feature map into fixed number of sub-regions
e The last column and last row might be smaller

v

Make it as
12 13 14 15 2x2 grids
Feature map
4x4x1 9 10 11

13 14 15




Rol Pooling

* Step 3:
For each sub-region, perform max pooling (pick the max one)

»
>

Max pooling 9 10

8 9 10




Rol Pooling

Divide projected

Project proposal proposal into 7x7

onto features

grid, max-pool Fully-connected
within each cell layers
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 x 640 x 480 512 x 20 x 15; 512x7x7 low-res conv features:
with region for region proposal 512 x7 x7

proposal Projected region

proposal is e.g.
512x 18 x 8

(Varies per proposa” Girshick, “Fast R-CNN”, ICCY 2015.

68



Fast R-CNN (Girshick IccV 2015)

* What could be the problems?

* We still need to collect the region proposals from a pre-processing step,
which does not allow end-to-end learning.

69



Faster R-CNN (Ren et al. NIPS 2015)

e Solution

* Why not generate region proposals using CNN?
-> Insert Region Proposal Network (RPN) to predict proposals from features

* Jointly train with 4 losses:
* RPN classification loss
* RPN regress box coordinates

* Final classification loss “lassification Jounding-t ‘ ;
. " ol pooling
* Final box coordinates ..
_ | ;
; proposals/ ; /

Region Proposal Network /ey

feature map
CNN
y _ /

https://arxiv.org/pdf/1506.01497.pdf

70
Image credit: http://zh.gluon.ai/chapter computer-vision/object-detection.html



https://arxiv.org/pdf/1506.01497.pdf
http://zh.gluon.ai/chapter_computer-vision/object-detection.html

R-CNN, Fast R-CNN, & Faster R-CNN

I Log loss + Smooth L1 loss Classification Bounding-box

‘/ '+ loss Livs ﬂ regression loss

—_— Linear + <
|Bbm: reg ||_5'~fh-15 | softmax e -
Rol pooling

| Bbox reg | SWMs | /‘t_ N o Classification Bounding-box

loss regression loss
=

Bboxreg || SvMs |

Conv proposals

Conv Net

71



Faster R-CNN with Feature Pyramid Network

Per-image computation Per-region computation for each r; € r(I)

Softmax clf. J

[ RolPool J > MLP

A

HEEEEEEE

Box regressor J

The whole-image feature representation
can be improved by making it multi-scale

Slide credit: Ross Girshick 72



Faster R-CNN (Ren et al. NIPS 2015)

* What could be the problems

* Two-stage detection pipeline is still too slow
for real-time detection in videos...

* What about instance-wise information?

person, sheep, d_f:ig '

(a) Image classification

(c) Semantic segmentation (d) Instance segmentation
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— object detection

R-CNN
Mask R-CNN (ICCV2017)
Fast R-CNN
* Goals: Faster R-CNN
* Refined detection + precise segmentation
* Faster R-CNN + FCN Mask R-CNN

e Overall design:

* Use of ResNet or feature pyramid net for feature extraction

* Use RPN to produce proposals (w/ ROl align)

* Use one detection branch for box classification + regression

* Use one segmentation branch for box segmentation

He et al, “Mask R-CNN", arXiv 2017

instance segmentation
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R-CNN Family

R-CNN Fast R-CNN

-ox .
box regression | - N R |
I:g ;-—-—clar.:', speelfic LSRE it
; Ve

* THyLe

classification

—-—5VM elasgificarion

cee Iined sl Tsalnre mep
canvelutional fsature oTs from

extraction Ancapnreon
mzhod -,

- warped reqion proposals

Eoelfeel laror

Zeaktura TCD

corvolutionadl bockbore

W —2x reglon proposals
{independent algorithm)

Mask R-CNN Faste f-CNN

F o box claszifimation box
Tegrags 10mn rogroes3sion

classificution

[ully connecled

. [ully conncoted
layers -

layecro

- flxed size fcature map oo Ao - fixed size fealure map

RolAlign layer

—-— FEATITE MAD I

RoIFool layer

—— Teature map

—- aopvoluticnal hackbone — convolut lonal backbone

slide: C. Lim
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Mask R-CNN (cont’d)

* Example Training Data (requires pixel-level labels)
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Mask R-CNN

* Very good results!

* running at 5fps though
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Recap

* So far, the introduced methods follow a two-stage framework.

1. Region Proposal
2. Per-Region Classification/Regression

* Can we make it faster by integrating the above two steps
into one single network?

(Sliding Windows

( R-CNN
Fast R-CNN
Mask R-CNN
Object Detection Methods - \ :

( YOLO
YOLOv2
YOLOv3

Two-stage Frameworks <

One-stage Frameworks <

\ \
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One-Stage Object Detection:
Detection without Proposals

Go from input image to tensor of scores with one big convolutional network! .

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- | Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3xHxW 7 %7 7x7x(5*B +C)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grid cell
Unified, Real-Time Object Detection”, CVPR 2016 H ere B - 3

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
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You Only Look Once (YOLO)

Divide the image into an S x S grid and for each grid cell predicts B bounding boxes,
confidence for those boxes, and C class probabilities.

These predictions are encoded asan S xS x (B * 5 + C) tensor.

i "|'

SxS grd on input Final detections

Class probability map
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You Only Look Once (YOLO)

class confidence score = box confidence score X conditional class probability

box confidence score = P,(object) - loU
conditional class probability = P,(class; |object)
class confidence score = P,(class;) - [oU

= box confidence score X conditional class probability

where

P,(object) is the probability the box contains an object.
IoU 1s the IoU (intersection over union) between the predicted box and the ground truth.

P,(class;|object) is the probability the object belongs to class; given an object is presence.

P,(class;) is the probability the object belongs to class;
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You Only Look Once (YOLO)

Fast.
Good for real-time processing.

End-to-end learnable.
Predictions (object locations and classes) are made from one single network.

Access to the entire image.

Region proposal methods limit the classifier to the specific region.

YOLO accesses to the whole image in predicting boundaries.

With additional context, result in fewer false positives in background areas.

Spatial diversity.
Detect one object per grid cell. It enforces spatial diversity in making predictions.

.
L v | s i
e ¢’ ‘ = ; : .
1 e S ul g e
e Bounding boxes + confidence -

Final detections

Sx S grid on input

Class probability map 82



YOLOv2

* Predetermined bounding box shape (anchor boxes)

Guesses that are common for real-life objects using k-means clustering
= Predicts offsets rather than bounding boxes themselves

* Move the class prediction from the cell level to the boundary box level

Each bounding box (instead of each cell) produces a class prediction

Avg 10U

0

SxSx(B*x5+C)=SxSx(B=*(5+0C))

12 3 45 6 7 8 9 101112 13 1415
# Clusters

....... ST
bW
: o(t) b=0(t )+c
Prz | Py ._.I g b =0(t )+c,
. G(tx) bw=pwen




YOLOv3

* Feature Pyramid Networks (FPN) like Feature Pyramid
YOLOv3 makes predictions at 3 different scales (similar to the FPN).

SxSx(3*(5+C))

91 y
| 7
79
) ee oo e —‘\-M
/

» Scale 1
@ Addition 82 Stride: 32

I

(ﬂ Concatenation

Residual Block /
Detection Layer i Scale 2
94 Stride: 16
Upsampling Layer
/r
e Further Layers i Scale 3
cale
106 Stride: 8

YOLO v3 network Architecture
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Single Shot MultiBox Detector (SSD)

Propose multiple default boxes per grid at different scales

===}

b |
1| |
n _ |

|— =

I
T

I

I

I

I .
L L
I

—|+——I|-'
I — |«

r——--

|
'-I-l---l
L

-
— -
=TT
|._I|||
-

-

1

|

,.
!
BUE
1
—] ] = =

Yloc A(cx,cy,w,h)
conf : (ci,ca, -+, cp)

KT i T TN

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map
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Recap

Object Detection Methods
( Sliding Windows

Two-stage Frameworks -

(High Accuracy, Slow)

One-stage Frameworks -

( R-CNN
Fast R-CNN
Mask R-CNN

( YOLO
YOLOv2

(Good Accuracy, Very Fast)

\

YOLOV3
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Overall mAP

40

35

30

25

20

15

10

Remarks

Faster R-CNN w/ResNet, Hi

Res, 50 Proposals

R-FCN w/
ResNet, Hi Res,
100 Proposals

200

Faster RCNN

SSD w/Inception V2, Lo Res
SSD w/MobileNet, Lo Res

400

Meta Architecture

W RFCN @ SSD

Faster R-CNN w/Inception
Resnet, Hi Res, 300
Proposals, Stride 8

Feature Extractor

Inception V2
Inception V3
MobileNet
Resnet 101
VGG

000 OC

600 800
GPU Time

Slide credit: UMich EECS 498-007

Takeaways:

Inception Resnet V2

1000

Two stage method (Faster
R-CNN) get the best
accuracy, but are slower
Single-stage methods
(SSD) are much faster, but
don’t perform as well
Bigger backbones improve
performance, but are
slower
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40

35

Overall mAP
N w
w o

N
o

15

10

Remarks (cont’d)

Current leaderboard
winner: 55 mAP

Method ???
Mask R-CNN

® |/ RexNext152 i T ¢ These results are a few years old ... since
R then GPUs have gotten faster, and we’ve

. improved performance with many tricks:
S . TR —— - Train longer!
ﬁ,/ O: e /o - Multiscale backbone: Feature Pyramid
et 46 % og Um S Networks
$o tw © 5 - Better backbone: ResNeXt
° . i - Single-Stage methods have improved
Feature Extractor - Very big models work better
R E EEE ggmw - Test-time augmentation pushes
LT B numbers up
S - Big ensembles, more data, etc
200 400 600 800 1000

GPU Time

Slide credit: UMich EECS 498-007 88



What'’s to Be Covered Today...

i |||“r.|||||'[:|:/--'ji%|..

%,%
* Generative Model i ‘_}r_
a7 A

* Autoencoder (AE)
» Variational Autoencoder (VAE) (next week)
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Discriminative vs. Generative Models

e Discriminative Models

* Model posteriors P(w]|x) from likelihoods P(x|w)
where x is the input data, and w indicates the class of interest

* Example (posterior)

or
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Discriminative vs. Generative Models (cont’d)

e Generative Models

* Model likelihoods P(x|w) with priors P(w) (i.e., modeling P(x| w) P(w))
where x is the input data, and w indicates the class of interest

Training Data Sample Generator
(CelebA) (Karras et al, 2017)
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Discriminative vs. Generative Models (cont’d)

P(cat | g )

Discriminative Model:

Learn a probability )
distribution p(y|x) P(dog | it )

Generative Model:
Learn a probability
distribution p(x)

P(dog | [Z3)

Conditional Generative

Model: Learn p(x]|y) Discriminative model: the possible labels for
each input “compete” for probability mass.
But no competition between images

Slide credit: UMich EECS 498-007 92



Discriminative vs. Generative Models (cont’d)

Discriminative Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give

label distributions for all images

Slide credit: UMich EECS 498-007 93



Discriminative vs. Generative Models (cont’d)

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability

distribution p(x)

Conditional Generative
Model: Learn p(x]|y)

Generative model: All possible images compete
with each other for probability mass

Model can “reject” unreasonable inputs by
assigning them small values

Slide credit: UMich EECS 498-007 94



Discriminative vs. Generative Models (cont’d)

P(g | cat)
Discriminative Model: ] P([Icat) P(#|cat) p(B | cat)
Learn a probability ] [ =
distribution p(y|x) P dog)

Generative Model:

Learn a probability
distribution p(x)

Con(;:llTlonal Generative Conditional Generative Model: Each possible
Model: Learn p(x|y) label induces a competition among all images

Slide credit: UMich EECS 498-007 95




Discriminative vs. Generative Models (cont’d)

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Recall Bayes’ Rule:

(Unconditional)
Generative Model

P(x)

P
PGy = e

Conditional
Generative Model

We can build a conditional generative
model from other components!

Slide credit: UMich EECS 498-007 96



Additional Remarks

* Discriminative Models
* Learn a (posterior)probability distribution p(y|x)
* Assign labels to each instance x
e Supervised learning

* Generative Models
* Learn a probability distribution p(x)
* Data representation, detect outliers, etc.
* Unsupervised learning
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What Have Been Done
Using Deep Generative Models?

* 5+ years of progress on synthesizing face images

Slide credit: |I. Goodfellow 98



What Have Been Done
Using Deep Generative Models?

e 2 vyears of progress on synthesizing images (ImageNet)

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

Brock et al
2018

(Odena 2018)

Slide credit: I. Goodfellow
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Why We Need Generative Models?

e Remarks

* Able to process data information (e.g., priors like attribute, category, etc.)
for synthesis, prediction, or recognition purposes

* For example, with latent feature z derived from x,
one may have P(z) may describe image variants.

* Or,zin P(z) may annotate object categorical or attribute information.

Gender Gender Gender
Sketch Photo Paint

* We will talk about a variety of visual applications based on
generative models

Liu et al., NeurIPS 2018 100



Taxonomy of Generative Models

Model does not explicitly
Model can Generative models compute p(x), but can

compute p(x)/ Nﬂple from p(x)

Explicit density Can compute Implicit density

/ Wimation to p(x) /X
\

Tractable density Approximate density Markov Chain Direct
Can compute p(x) GSN Generative Adversarial
- Autoregressive Q\letworks (GANSs) py
- NADE / MADE 4
~ NICE / RealNVP Variational Markov Chain

Glow

Ffiord Variational Autoencoder Boltzmann Machine

lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017 101



Take a Deep Look to Discover

Latent Variables/Representations

e Autoencoder

Autoencoding = encoding itself with recovery purposes
In other words, encode/decode data with reconstruction guarantees

» Latent variables/features as deep representations

* Example objective/loss function at output:

* L2 norm between input and output, i.e.,

-

Original
input

Encoder

—»i—» Decoder —>.2
Reconstructed
input

Compressed P

representation

most important information
of input image = latent space

Slide credit: W. Chiu
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Take a Deep Look to Discover
Latent Variables/Representations (cont’d)

* Autoencoder (AE) for downstream tasks
* Train AE with reconstruction guarantees

* Keep encoder (and the derived features) for downstream tasks (e.g., classification)
e Thus, a trained encoder can be applied to initialize a supervised model

Loss function
(Softmax, etc)

/\

Reconstructed

input data "E Predicted Label
Decoder Classifier Fine-tune
encoder
Features 2 Features Z jointly with
1 § classifier
Encoder Encoder
Input data Z Input data xT

Slide credit: UMich EECS 498-007 103



Take a Deep Look to Discover
Latent Variables/Representations (cont’d)

e What’s the Limitation of Autoencoder?

Reconstructed

input

latent space

&
-~
m fa
a
] 2
HR ]
4
E
B o
g 2
Ii!l

L
= Rwhat might it A
be? We wanna to have “distribution” p(z)

P
~~~~~~
11111

Only samples, how about other where we can sample from any location
regions not covered?

Z" Encoder —>E—» Decoder _}z
compressed
tatien
B
a
)
M

original
input

Slide credit: W. Chiu 104



Taxonomy of Generative Models

Model does not explicitly

Model can Generative models compute p(x), but can
compute p(x)/ \&ar‘nple from p(x)
Explicit density 7~ Can compute \ Implicit density
/ \wimation to p(x) /\
Tractable density Approximate density Markov Chain Direct
\_
Can compute p(x) @ / GSN Generative Adversarial
- Autoregressive Networks (GANs)
- NADE / MADE 4
~ NICE / RealNVP Variational Markov Chain
Glow
Ffiord Variational Autoencoder Boltzmann Machine

lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017 105



Variational Autoencoder

e Probabilistic Spin on AE

e Learn latent feature z from raw data x
« Sample from the latent space (via model) to generate data

Sample from

conditional T : : .
(z | (i)) i Assume simple prior p(z), e.g. Gaussian
pox(T | 2

Represent p(x|z) with a neural network

Sample z
(Similar to decoder from autencoder)

from prior

po+(2) V4

* p(x]z)isimplemented via a (probabilistic) decoder

M|z Emlz Decoder inputs z, outputs mean L,
and (diagonal) covariance 3,

Sample x from Gaussian with mean
U, and (diagonal) covariance 3,

V4

Slide credit: UMich EECS 498-007 106



Variational Autoencoder (cont’d)

e Remarks

Train VAE via maximum likelihood of data
Note that we don’t observe z & need to marginalize it:

po(x) = f po(x, 2)dz = f po (x| 2)pe (2)dz

We can compute with the decoder module,
and we assume Gaussian prior for z, i.e.,

However, can’t integrate over all possible z!
Recall that we have Bayes’ rule:

po(x | 2)pg(2)
po(z | x)

po(x) =

Hz|z

We can’t compute pg(z | x), but we can train the encoder module to learn

Ay (2| x) = pg(z | x)

Slide credit: UMich EECS 498-007




Variational Autoencoder (cont’d)

* Now we have...

Decoder network inputs Encoder network inputs
latent code z, gives data x, gives distribution
distribution over data x  over latent codes z

pQ(x | Z) = N(ﬂx|2sz|Z) qu(z | x) = N(ﬂzpo Z"2:|x)

Hzx|z Za:|z Hz|z Ezl:r:
Z T
e |If we ensure 94z | x) = pg(z | x)
then we have pe(x | 2)p(2)
pg(x) =
q4(z | x)

Slide credit: UMich EECS 498-007
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Training VAE _} neoder _'iﬁ pecoder ﬁ

Original
iant Reconstructed

input
Compressed P

representation

pe(x | z)p(z) _ po(x|2)p(2)qe (2]x)

logpe () = log =y = o ok, el
) 4y (2]x) dg (2]X)]
= E,|logpe (x|z)| — E, [lo p(@) +E; |los Do (le)i

— Ez~q¢(z|x) [log Po (X|Z)] — Dgy (qu (Z|x):P(Z)) + Dg, (Q(I) (le):pt? (le))

Data reconstruction KL divergence between KL divergence between
sample distribution sample distribution
from the encoder and from the encoder and
the prior the posterior of data

D 10gpe () = E;-qy 210 [108 P9 (x12)] — Dy (44 (21, p(2))

i.e., variational lower bound on the data likelihood pg(x)

Slide credit: UMich EECS 498-007 109



Summary:
From Autoencoder to Variational Autoencoder

| Now is a “distribution”, we can assume it to be
a distribution easy to sample from, e.g. Gaussian

||X — fl':‘|||z

7(2)
A

%_ecmst ructed

input

assume p(z) = N (0, 1) | Decoder
KLIN G X), S ) INO.T) ()

A

Sample = from N (j¢( X), (X))

representation

Conpressed
tatis

Encoder

(@)

A

X

z—) Encoder —ri—» Decoder —b-z

driginal
input

Slide credit: W. Chiu 110
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From Autoencoder to Variational Autoencoder (cont

* Example Results

o
DA NANNALRE LN NSNNNNS
VIR ELLLLLLW NN~
VAV IRk hbbovveew~~
QUAVYY I n by By Gn s QWIS e~~~
QAOAOOVUINININ NGB IYIVI WP W = ——
QQOOIMIMMMMog o QDD DD 9 = = —
QODDIM N M) oY E D DD P e — —
QOO MMM MO DD D et e e —
QOODOMMOMMM MM N0 DD e — —
QOOOMMMM M0 W®® e - - — —
QO MM " " 0000 00 o en e B -
DAl 000000 00 B o o~ B~ o~ =
R L L LT N N R
S LLLE R G S SR
JadddadocgrorrrrrTT TN~
Sdadadadadorrrrrrr TR~
SddddgTrrrrrrrTTITRRNN
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(b) Learned MNIST manifold

(a) Learned Frey Face manifold
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From Autoencoder to Variational Autoencoder (cont’d)

* Example Results
« N-A+B=PH

Man Man

with glasses

Woman with Glasses

Radford et al., 2015 112



What We’ve Covered Today...

AR .
P 1’%@,35?"4”"”.-]! \-'b;
N L =
* Segmentation p (s Wl
®

Object Detection

Generative Model
Next time: GAN & Diffusion Models

HW #1 is out & due Oct. 10t Mon 23:59
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