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What’s to Be Covered Today…

• Segmentation

• Object Detection
• Generative Model

• HW #1 is out & due Oct. 10th Mon 23:59
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A Practical Segmentation Task

• Semantic Segmentation
• Supervised learning
• Assign a class label to each pixel in the input image (i.e., pixel-level classification)
• Not like instance segmentation, do not differentiate instances; 

only care about pixel labels
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Semantic Segmentation

• Fully Convolutional Nets
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Semantic Segmentation

• Fully Convolutional Nets (cont’d)
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In-Network Downsampling

• Revisit: Learnable Downsampling: Convolution
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In-Network Upsampling

• Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
• 1D example
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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Fully Convolutional Networks (FCN)

• Remarks
• All layers are convolutional
• End-to-end training
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Fully Convolutional Networks (FCN)

• More details
• Use transpose convolution to upsample pixel-wise classification results
• Adapt existing classification network to fully convolutional forms
• Remove flatten layer and replace fully connected layers with conv layers
• Append 1 x 1 conv layer with channel dims to predict scores for each class
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Fully Convolutional Networks (FCN)
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Fully Convolutional Networks (FCN)

• Example
• VGG16-FCN32s
• Loss: pixel-wise cross-entropy
i.e., compute cross-entropy between each pixel and its label, and average over all of them 

VGG16 (Pretrained)

Input shape: 256 x 256

Coarse prediction shape: 8 x 8

Upsample 32x (transpose conv)

Pixel-wise prediction shape: 256 x 256
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SegNet

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”  [link]

• Efficient architecture (memory + computation time)
• Upsampling reusing max-unpooling indices
• Reasonable results without performance boosting addition
• Comparable to FCN

14

https://arxiv.org/pdf/1511.00561.pdf


U-Net (Ronneberger et al., MICCAI’15)
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• Remarks
• In biomedical image segmentation, localization is critical;

in other words, precise semantic segmentation is desirable
• Plus, # of training images might not be sufficient.



U-Net (cont’d)

U-Net: Convolutional Networks for Biomedical Image Segmentation  [link]
16



Additional Remarks:
Elastic Deformation for Pre-processing

• Data augmentation is crucial for U-Net (and more DL models)

• Elastic deformation allows manipulation of medical images & GT seg maps

17Code: elastic_distortion.py

https://github.com/zomux/deepy/blob/master/deepy/preprocessing/elastic_distortion.py


Additional Remarks:
Enhanced Spatial Information

• For semantic segmentation, 
spatial information is of great importance

• It is desirable for the model to observe 
• Both the target pixel and its neighboring areas

• Recall: Atrous (or dilated) convolution
• Features across different scales should be considered

• Spatial Pyramid Pooling

18



Revisit of Dilated Convolution

• Atrous (Dilated) Convolution
• Larger receptive field with the same kernel size

(e.g., a 3x3 kernel depicted below with different receptive field)
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Spatial Pyramid Pooling (SPM)

• Goal:
• Integrating information viewed under different scales
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Thus, we have…

• Atrous Spatial Pyramid Pooling
• Combines both techniques for producing enhanced spatial info
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DeepLabv3+

Chen et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation," ECCV 2018
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What’s to Be Covered Today…

• Segmentation

• Object Detection
• Generative Model
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Roadmap

Slide from A. Karpathy 24



Object Category Detection
• Focus on object search: “Where is it?”

• Build templates that quickly differentiate object patch from background patch

Object or 
Non-Object?

Dog Model
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General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

Gradient/region based or CNN features, 
usually based on summary representation 
with classification/voting results

Rescore each proposed object 
based on the entire candidate set
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Challenges in Modeling the Object Classes

Illumination Object pose Clutter

Intra-class appearanceOcclusion Viewpoint

Slide from K. Grauman, B. Leibe 27



Challenges in Modeling the Non-object Classes

Bad 
Localization

Confused with 
Similar Object

Confused with 
Dissimilar ObjectsMisc. Background

True 
Detection
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Type of Approaches

• Sliding Windows
• “Slide” a box around the input image
• Classify each cropped image region inside the box 

and determine if it’s an object of interest or not
• E.g., HOG (person) detector by Dalal and Triggs (2005)

Deformable part-based model by Felzenswalb et al. (2010)
Real-time (face) detector by Viola and Jones (2001)

• Region (Object) Proposals
• Generate region (object) proposals
• Classify each image region and determine it’s an object or not
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Type of Approaches (cont’d)
• CNN-based Methods

30Slide credit: UMich EECS 498-007



Before the Rise/Resurgence of CNN:
The HOG Detector

• Histogram of Oriented Gradients

• Sliding window detector find objects in 4 steps:
• Inspect every window
• Extract features in window
• Classify & accept window if score > threshold
• Clean-up (post-processing) stage
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• Step 1: Inspect every window
• Objects can vary in sizes, what to do?
• Sliding window + image pyramid!
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• Step 2: Extract Features in Window
• Histogram of Oriented Gradients (HOG) features
• Similar to SIFT in some ways…

• ever heard of SIFT?
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• Step 2: Extract Features in Window
• Histogram of Gradients (HOG) features
• Ways to compute image gradients…
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• Step 2: Extract Features in Window
• Histogram of Gradients (HOG) features
• Divide the image into non-overlapping cells (grids) of 8 x 8 pixels
• Compute a histogram of orientations in each cell, 

resulting in a 9-dimensional feature vector.
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• Step 2: Extract Features in Window
• Histogram of Gradients (HOG) features
• Divide the image into non-overlapping cells (grids) of 8 x 8 pixels
• Compute a histogram of orientations in each cell (similar to SIFT), 

resulting in a 9-dimensional feature vector.
• We now take blocks, where each has 2 x 2 cells, for HOG normalization.

36



• Step 2: Extract Features in Window
• Compute a histogram of orientations in each cell (similar to SIFT), 

resulting in a 9-dimensional feature vector.
• We now take blocks, where each has 2 x 2 cells, for HOG normalization
• Normalize each feature vector, such that each block has unit norm. 

This does not change the dim of the feature, just the magnitude.
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• Step 2: Extract Features in Window
• Normalize each feature vector, such that each block has unit norm. 

This does not change the dim of the feature, just the magnitude.
• Each cell is in 4 blocks thus has 4 different normalizations;

we make each as a feature representation.
• For each class of person, window is 15 x 7 HOG cells.
• We vectorize each the feature matrix in each window.
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• Step 3: Detection (classify & accept window if score > threshold) 
• Train a window classifier (e.g., linear or non-linear classifiers)
• Use the trained classifier to predict presence of object class in each window
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• Step 3: Detection (Classify & accept window if score > threshold) 
• Train a window classifier
• Use the trained classifier to predict presence of object class in each window
• During testing, compute the score wTx+b in each location, which can be viewed as 

performing cross-correlation (or convolution) with template w (and add bias b).
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• Step 4: Cleaning-Up
• Perform a greedy algorithm of non-maxima suppression (NMS)

to pick the bounding box with highest score

∩
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• Evaluation
• IoU (intersection over union)

• E.g, detection is correct if IoU between bounding box and ground truth > 50%

42



• Evaluation
• IOU (intersection over union)

• Mean IOU (mIOU): average IOU across classes

• Precision and Recall
• Sort all the predicted boxes according to scores, in a descending order
• For each location in the sorted list, 

we compute precision and recall obtained when using top k boxes in the list.
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• Evaluation
• IOU (intersection over union)
• Precision and Recall
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• Evaluation
• IoU (intersection over union)
• Precision and Recall
• Average Precision (AP):

• Compute the area under P-R curve
• mean Average Precision (mAP): average of AP across classes
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Something to Think About…

• Sliding window detectors work 
• very well for faces
• fairly well for cars and pedestrians
• badly for cats and dogs

• Why are some classes easier than others?
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Recall that

• Visual Features derived by Convolutional Neural Networks 
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Image credit: Justin Johnson

CNN as Feature Extractor
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Slides by Justin Johnson

CNN as Feature Extractor
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Slides by Justin Johnson

CNN as Feature Extractor
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Slides by Justin Johnson

CNN as Feature Extractor
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• What could be the problems?
• Suppose we have an image of 600 x 600 pixels. 

If sliding window size is 20 x 20, 
then have (600-20+1) x (600-20+1) = ~330,000 windows to compute.

• What if more accurate results are needed, 
need to perform multi-scale detection by

• Resize image
• Multi-scale/shape sliding windows

• For each image, we need to forward pass image regions through CNN 
for at least ~330,000 times. -> Slow!!!

CNN as Feature Extractor
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Recap: CNN for Object Detection

53Slide credit: UMich EECS 498-007

• Need to deal with more than one object
• How?



Two-Stage vs. One-Stage Object Detection

Methods

Sliding Windows

Two−stage Frameworks

R−CNN
Fast R−CNN

Mask R−CNN
⋮

One−stage Frameworks

YOLO
YOLOv2
YOLOv3

⋮
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Region Proposal

• Solution
• Use pre-processing algorithms to filter out some regions first,

and feed the regions of interest (i.e., region proposals) into CNN
• E.g., selective search

Uijilings et al. IJCV 2013 55



R-CNN (Girshick et al. CVPR 2014)

• Replace sliding windows with “selective search” region proposals
(Uijilings et al. IJCV 2013)

• Extract rectangles around regions and resize to 227x227 pixels
• Extract features with fine-tuned CNN 

(e.g., initialized with network pre-trained on ImageNet)

• Classify last layer of network features with linear classifiers (e.g., SVM/MLP), 
and refine bounding box localization (bbox regression) simultaneously

http://arxiv.org/pdf/1311.2524.pdf 56

http://arxiv.org/pdf/1311.2524.pdf


R-CNN (Girshick et al. CVPR 2014)

• Ad hoc training objectives:
• Object class: Fine-tune network with softmax classifier (log loss)
• Object class: Train post-hoc linear SVMs for each class (hinge loss)
• Bbox location: Train post-hoc bounding-box regressors (least squares loss)

• Training is extremely slow with lots of disk space.
• Implementation/testing cannot be done in real time.

http://arxiv.org/pdf/1311.2524.pdf 57

http://arxiv.org/pdf/1311.2524.pdf


Bounding Box Regression

• Intuition
• If you observe parts of an object, according to the seen examples, 

you should be able to predict/refine the localization.
• E.g., given the red bounding box below, since you’ve seen many airplanes, 

you know this is not a good localization, you will adjust it to the green one.
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• What could be the problems?
• Repetitive computation!

For overlapping regions, we feed it multiple times into CNN 

R-CNN (Girshick et al. CVPR 2014)
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Fast R-CNN (Girshick ICCV 2015)

• Solution
• Why not feed the whole image into CNN only once?
• Then, crop the feature map instead of the image itself

https://arxiv.org/pdf/1504.08083.pdf 60

https://arxiv.org/pdf/1504.08083.pdf


Fast R-CNN (Girshick ICCV 2015)

• Solution

https://arxiv.org/pdf/1504.08083.pdf 61

https://arxiv.org/pdf/1504.08083.pdf


• How to crop features?
• Since we have fully-connected layers, the size of feature map 

for each bounding box should be a fixed number

Fast R-CNN (Girshick ICCV 2015)
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• How to crop features?
• Since we have fully-connected layers, the size of feature map for each 

bounding box should be a fixed number
• Resize/Interpolate the feature map as fixed size?

• Not optimal. This operation is hard to backprop.
-> we cannot train the conv layers in CNNs…

Fast R-CNN (Girshick ICCV 2015)
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• How to crop features?
• Since we have fully-connected layers, the size of feature map for each 

bounding box should be a fixed number
• Resize/Interpolate the feature map as fixed size?

• Not optimal. This operation is hard to backprop.
-> we cannot train the conv layers for this problem…

• RoI (Region of Interest) Pooling
• How?

Fast R-CNN (Girshick ICCV 2015)
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RoI Pooling

• Step 1: 
Get bounding box for feature map from bounding box for image

• Due to the (down)convolution/pooling operations, 
feature map would have a smaller size than the original image.

Feature map
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• Step 2:
Divide cropped feature map into fixed number of sub-regions

• The last column and last row might be smaller

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Feature map
4 x 4 x 1

0 1 2

4 5 6

8 9 10

Make it as 
2x2 grids 1 2 3

5 6 7

9 10 11

13 14 15

RoI Pooling
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• Step 3:
For each sub-region, perform max pooling (pick the max one)

0 1 2

4 5 6

8 9 10
Max pooling

5 6

9 10

RoI Pooling
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RoI Pooling
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• What could be the problems?
• We still need to collect the region proposals from a pre-processing step,

which does not allow end-to-end learning.

Fast R-CNN (Girshick ICCV 2015)
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Faster R-CNN (Ren et al. NIPS 2015)

• Solution
• Why not generate region proposals using CNN? 

-> Insert Region Proposal Network (RPN) to predict proposals from features
• Jointly train with 4 losses:

• RPN classification loss
• RPN regress box coordinates
• Final classification loss
• Final box coordinates

https://arxiv.org/pdf/1506.01497.pdf

Image credit: http://zh.gluon.ai/chapter_computer-vision/object-detection.html
70
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R-CNN, Fast R-CNN, & Faster R-CNN
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Faster R-CNN with Feature Pyramid Network

Slide credit: Ross Girshick 72



• What could be the problems
• Two-stage detection pipeline is still too slow

for real-time detection in videos…
• What about instance-wise information?

Faster R-CNN (Ren et al. NIPS 2015)
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• Goals:
• Refined detection + precise segmentation
• Faster R-CNN + FCN

• Overall design:
• Use of ResNet or feature pyramid net for feature extraction
• Use RPN to produce proposals (w/ ROI align)
• Use one detection branch for box classification + regression
• Use one segmentation branch for box segmentation

Mask R-CNN (ICCV2017)
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R-CNN Family

75



• Example Training Data (requires pixel-level labels)

Mask R-CNN (cont’d)
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• Very good results!
• running at 5fps though

Mask R-CNN
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Recap

• So far, the introduced methods follow a two-stage framework.
1. Region Proposal
2. Per-Region Classification/Regression

• Can we make it faster by integrating the above two steps
into one single network?

Object Detection Methods   

Sliding Windows

Two−stage Frameworks

R−CNN
Fast R−CNN

Mask R−CNN
⋮

One−stage Frameworks

YOLO
YOLOv2
YOLOv3

⋮
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One-Stage Object Detection: 
Detection without Proposals

79



You Only Look Once (YOLO)
Divide the image into an S × S grid and for each grid cell predicts B bounding boxes, 
confidence for those boxes, and C class probabilities.

These predictions are encoded as an S × S × (B ∗ 5 + C) tensor.
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You Only Look Once (YOLO)

class confidence score = box confidence score × conditional class probability
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You Only Look Once (YOLO)

• Fast. 
Good for real-time processing.

• End-to-end learnable.
Predictions (object locations and classes) are made from one single network. 

• Access to the entire image.
Region proposal methods limit the classifier to the specific region. 
YOLO accesses to the whole image in predicting boundaries. 
With additional context, result in fewer false positives in background areas.

• Spatial diversity.
Detect one object per grid cell. It enforces spatial diversity in making predictions.
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YOLOv2

• Predetermined bounding box shape (anchor boxes)
Guesses that are common for real-life objects using k-means clustering
⟹ Predicts offsets rather than bounding boxes themselves

• Move the class prediction from the cell level to the boundary box level
Each bounding box (instead of each cell) produces a class prediction

S × S × (B ∗ 5 + C) ⟹ S × S × (B ∗ (5 + C)) 
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YOLOv3

• Feature Pyramid Networks (FPN) like Feature Pyramid
YOLOv3 makes predictions at 3 different scales (similar to the FPN).

S × S × (3 ∗ (5 + C))
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Single Shot MultiBox Detector (SSD)

Propose multiple default boxes per grid at different scales
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Recap

Object Detection Methods
Sliding Windows

Two−stage Frameworks

R−CNN
Fast R−CNN

Mask R−CNN
⋮

One−stage Frameworks

YOLO
YOLOv2
YOLOv3

⋮

(High Accuracy, Slow)

(Good Accuracy, Very Fast)
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Remarks

87Slide credit: UMich EECS 498-007



Remarks (cont’d)

88Slide credit: UMich EECS 498-007



What’s to Be Covered Today…

• Segmentation

• Object Detection
• Generative Model

• Autoencoder (AE)
• Variational Autoencoder (VAE) (next week)
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Discriminative vs. Generative Models
• Discriminative Models

• Model posteriors P(ω|x) from likelihoods P(x|ω)
where x is the input data, and ω indicates the class of interest

• Example (posterior)

90

or

P(ω1|x)
P(ω2|x)



Discriminative vs. Generative Models (cont’d)
• Generative Models

• Model likelihoods P(x|ω) with priors P(ω) (i.e., modeling P(x|ω) P(ω))
where x is the input data, and ω indicates the class of interest

• Example

91



Discriminative vs. Generative Models (cont’d)

92Slide credit: UMich EECS 498-007



Discriminative vs. Generative Models (cont’d)

93Slide credit: UMich EECS 498-007



Discriminative vs. Generative Models (cont’d)

94Slide credit: UMich EECS 498-007



Discriminative vs. Generative Models (cont’d)

95Slide credit: UMich EECS 498-007



Discriminative vs. Generative Models (cont’d)

96Slide credit: UMich EECS 498-007



Additional Remarks

• Discriminative Models
• Learn a (posterior)probability distribution p(y|x)
• Assign labels to each instance x
• Supervised learning

• Generative Models
• Learn a probability distribution p(x)
• Data representation, detect outliers, etc.
• Unsupervised learning
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What Have Been Done 
Using Deep Generative Models?

• 5+ years of progress on synthesizing face images

98Slide credit: I. Goodfellow



What Have Been Done 
Using Deep Generative Models?
• 2 years of progress on synthesizing images (ImageNet)

99Slide credit: I. Goodfellow



Why We Need Generative Models?
• Remarks

• Able to process data information (e.g., priors like attribute, category, etc.) 
for synthesis, prediction, or recognition purposes

• For example, with latent feature z derived from x, 
one may have P(z) may describe image variants.

• Or, z in P(z)  may annotate object categorical or attribute information.

• We will talk about a variety of visual applications based on 
generative models

100Liu et al., NeurIPS 2018



Taxonomy of Generative Models

101Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017



Take a Deep Look to Discover 
Latent Variables/Representations

• Autoencoder
• Autoencoding = encoding itself with recovery purposes
• In other words, encode/decode data with reconstruction guarantees
• Latent variables/features as deep representations
• Example objective/loss function at output:

• L2 norm between input and output, i.e.,

102Slide credit: W. Chiu



Take a Deep Look to Discover 
Latent Variables/Representations (cont’d)

• Autoencoder (AE) for downstream tasks
• Train AE with reconstruction guarantees
• Keep encoder (and the derived features) for downstream tasks (e.g., classification)
• Thus, a trained encoder can be applied to initialize a supervised model

103Slide credit: UMich EECS 498-007



Take a Deep Look to Discover 
Latent Variables/Representations (cont’d)

• What’s the Limitation of Autoencoder?

104Slide credit: W. Chiu



Taxonomy of Generative Models

105Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017



Variational Autoencoder

• Probabilistic Spin on AE
• Learn latent feature z from raw data x
• Sample from the latent space (via model) to generate data 

• p(x|z) is implemented via a (probabilistic) decoder

106Slide credit: UMich EECS 498-007



Variational Autoencoder (cont’d)

• Remarks
• Train VAE via maximum likelihood of data
• Note that we don’t observe z & need to marginalize it:

• We can compute                        with the decoder module, 
and we assume Gaussian prior for z, i.e., 

• However, can’t integrate over all possible z!
• Recall that we have Bayes’ rule:

We can’t compute , but we can train the encoder module to learn 

107Slide credit: UMich EECS 498-007



Variational Autoencoder (cont’d)

• Now we have…

• If we ensure 
then we have

108Slide credit: UMich EECS 498-007



Training VAE

109Slide credit: UMich EECS 498-007

Data reconstruction KL divergence between 
sample distribution 
from the encoder and 
the prior

KL divergence between 
sample distribution 
from the encoder and 
the posterior of data 

i.e., variational lower bound on the data likelihood pΘ(x)



Summary: 
From Autoencoder to Variational Autoencoder

110Slide credit: W. Chiu



From Autoencoder to Variational Autoencoder (cont’d)

• Example Results

111Kingma et al., 2013



From Autoencoder to Variational Autoencoder (cont’d)

• Example Results
• A’ – A + B = B’

112Radford et al., 2015



What We’ve Covered Today…

• Segmentation

• Object Detection
• Generative Model

• Next time: GAN & Diffusion Models

• HW #1 is out & due Oct. 10th Mon 23:59
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