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What’s to Be Covered Today…

• Convolutional Neural Networks
• Properties of CNN
• Selected variants of CNN
• Training CNN
• Visualizing CNN

• Segmentation
• HW #1 is out & due Oct. 10th Mon 23:59
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CNN
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FC Layer
• Contains neurons that connect to the entire input volume, 

as in ordinary neural networks
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FC Layer
• Contains neurons that connect to the entire input volume, 

as in ordinary neural networks
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LeNet

• Presented by Yann LeCun during the 1990s for reading digits
• Has the elements of modern architectures
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LeNet [LeCun et al. 1998]

Gradient-based learning applied to document recognition
[LeCun, Bottou, Bengio, Haffner 1998] 7

LeNet-1 from 1993

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


AlexNet [Krizhevsky et al., 2012]

• Repopularized CNN 
by winning the ImageNet Challenge 2012

• 7 hidden layers, 650,000 neurons, 
60M parameters

• Error rate of 16% vs. 26% for 2nd place.
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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# of Hyperparameters 
in AlexNet (cont’d)

Slide credit: UMich EECS 498-007 
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Additional Remarks
on AlexNet

Slide credit: UMich EECS 498-007 

Most of the memory usage 
in early convolution layers

Nearly all the parameters are 
in the fully connected layers

Most floating-point operations 
occur in the convolution layers



Deep or Not?
• Depth of the network is critical for performance.
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Btw, what is 1x1 Convolution? 

• Doesn’t 1x1 convolution sound redundant?
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What is 1x1 Convolution? (cont’d)

• Doesn’t 1x1 convolution sound redundant?
• Simply speaking, it allows…

• DR:
• NL:
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What is 1x1 Convolution? (cont’d)
• Example 1

{28 x 28 x 192} convolved with 32 {5 x 5 x 192} kernels into {28 x 28 x 32}

• (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

• Example 2
{28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into {28 x 28 x 16}, followed 
by convolution with into 32 {5 x 5 x 16} kernels into {28 x 28 x 32}

• 192 mul x (28 x 28) pixels x 16 kernels  ~ 2.4M

• (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M

• 12.4M vs. 120M
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What’s to Be Covered Today…

• Convolutional Neural Networks
• Properties of CNN
• Selected variants of CNN
• Training CNN
• Visualizing CNN

• Segmentation
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CNN: A Revolution of Depth
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ResNet
• Can we just increase the #layer?

• How can we train very deep network?
- Residual learning
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DenseNet
• Shorter connections (like ResNet) help
• Why not just connect them all?
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GoogleNet
• Focus on Efficiency

• Parameter
• Memory
• Computation

• Aggressively downsample the input

22Szegedy et al., Going Deeper with Convolutions, CVPR 2015



GoogleNet (cont’d)

• Inception Module
• Local units with parallel branches
• Repeat multiple times
• Use 1x1 bottleneck layers to reduce channel dims

23Szegedy et al., Going Deeper with Convolutions, CVPR 2015



GoogleNet (cont’d)

• Inception Module
• Local units with parallel branches
• Repeat multiple times
• Use 1x1 bottleneck layers to reduce channel dims

• Global Average Pooling 
• Avoid large FC layers 

• Auxiliary Classifier

24Szegedy et al., Going Deeper with Convolutions, CVPR 2015



GoogleNet (cont’d)

• Inception Module
• Local units with parallel branches
• Repeat multiple times
• Use 1x1 bottleneck layers to reduce channel dims

• Global Average Pooling 
• Avoid large FC layers 

• Auxiliary Classifier
• Guidance to intermediate layers
• Avoid deep layer with vanishing gradients

25Szegedy et al., Going Deeper with Convolutions, CVPR 2015



ResNeXT
• Deeper and wider → better…what else?

• Increase cardinality

ResNet block ResNeXt block

Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." CVPR, 2017.
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Squeeze-and-Excitation Net (SENet)
• How to improve acc. without much overhead?

• Feature recalibration (channel attention)

Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." CVPR, 2018. 133



Comparing Complexity

28Canziani et al., An analysis of DNN for practical applications, 2017

 Highest memory, most ops:
 Very efficient with moderate acc:
 Few ops but lots of parameters:
 Simple design, moderate efficiency 

yet high accuracy:



MobileNets: Tiny Networks for End Devices

• MobileNet V1
• Depthwise & pointwise convolution

Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017 133



MobileNets (cont’d)

• MobileNet V1
• Depthwise & pointwise convolution
• Reduced Computation

• Input feature map DF x DF pixels with M channels, kernel size DK, & output with N channels
• The ratio of required computation of depth+pointwise conv. and standard conv. is :

• Thus, depth+pointwise convolution requires only 1/N + 1/DK
2 of the computation cost

compared with that of standard convolution.

Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017 133

Depthwise Convolution Pointwise Convolution

Standard Convolution



MobileNets (cont’d)

• MobileNet V1
• Reduced Memory Size

• Take a standard convolution which kernel size is DK (with M input and N output channels).
• The operation can be separated into a depthwise convolution which kernel (filter) size is DK , 

and a pointwise convolution where input and output channels are M and N, respectively.
• Therefore, the memory reduction is also 1/N + 1/DK

2 .

Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017 133



Remarks
• CNN: convolution, nonlinearity, pooling & FC

• Reduce the number of parameters
• Reduce the memory requirements
• Make computation independent of the size of the image

• Neuroscience provides strong inspiration on the NN design, 
but little guidance on how to train CNNs.
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What’s to Be Covered Today…

• Convolutional Neural Networks
• Properties of CNN
• Selected variants of CNN
• Training CNN
• Visualizing CNN

• Segmentation
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Training Convolutional Neural Networks

• Backpropagation +
stochastic gradient descent with momentum 

• Neural Networks: Tricks of the Trade

• Dropout
• Data augmentation
• Batch normalization

34
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36Slide credit: UMich EECS 498-007 



37Slide credit: UMich EECS 498-007 



38Slide credit: UMich EECS 498-007 



39Slide credit: UMich EECS 498-007 



40Slide credit: UMich EECS 498-007 



𝑓𝑓 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧 = 𝑞𝑞𝑞𝑞

Slide credit: Andrej Karpathy

𝑓𝑓 = 𝑞𝑞𝑞𝑞
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

= 𝑧𝑧,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑞𝑞

Chain rule:
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝑥𝑥

𝑞𝑞 = 𝑥𝑥 + 𝑦𝑦
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

= 1,
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕

= 1
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Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Intuition: successful conspiracies
Example: 50 people planning a conspiracy
• Strategy A: plan a big conspiracy involving 50 people

• Likely to fail. 50 people need to play their parts correctly.
• Strategy B: plan 10 conspiracies each involving 5 people

• Likely to succeed!

42

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Dropout

Main Idea: approximately combining 
exponentially many different neural 
network architectures efficiently

43Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Data Augmentation (Jittering)
• Create virtual training samples

• Horizontal flip
• Random crop
• Color casting
• Geometric distortion

Deep Image [Wu et al. 2015] 44

http://arxiv.org/pdf/1501.02876v2.pdf


Batch Normalization

Credit: Andrew Ng 45



Variants of Normalization in Training CNN
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Batch Normalization

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [Ioffe and Szegedy 2015] 47

http://arxiv.org/pdf/1502.03167v3.pdf


Batch Normalization (cont’d)

• Remarks
• Differentiable function; back propagation OK

• Procedure

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

Per-channel mean 
across N samples

Per-channel std
across N samples

48

http://arxiv.org/pdf/1502.03167v3.pdf


Batch Normalization (cont’d)

• Remarks
• Differentiable function; back propagation OK

• Procedure (cont’d)
• With learnable scale and shift parameters γ and β

to alleviate the hard constraint of zero-mean and unit variance

• Mean and  variance estimated from each mini-batch during training
• What about inference/testing?

Per-channel mean 
across N samples

Per-channel std
across N samples

49



Batch Normalization in CNN

50



Instance Normalization in CNN
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Variants of Normalization in Training CNN
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What’s to Be Covered Today…

• Convolutional Neural Networks
• Properties of CNN
• Selected variants of CNN
• Training CNN
• Visualizing CNN

• Segmentation
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Visualizing CNN (if time permits):
What’s Going on Inside CNNs?

http://vision03.csail.mit.edu/cnn_art/data/single_layer.png
54

http://vision03.csail.mit.edu/cnn_art/data/single_layer.png


Recap: 
Visualizing CNN Features (at the final layer)
• Visualization via Dimension Reduction

• Linear DR: PCA
• Non-linear DR:

t-distributed stochastic neighbor embedding (t-SNE)
(by G. Hinton & L. van der Maaten)

• For classification purposes, FC layers are applied.
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Remarks
• Powerful tool for data visualization
• Help understand black-box algorithms like CNN 
• Alleviate crowding problem
• Great resources/tools available

e.g., https://distill.pub/2016/misread-tsne

56

https://distill.pub/2016/misread-tsne


Recap: 
Visualizing CNN Features (at the final layer)
• Visualization via Dimension Reduction

• Linear DR: PCA
• Non-linear DR: t-SNE
• For classification purposes, FCN is applied.

• What about other layers?

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html 57

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Visualization of Activations

• Take conv5 feature map (13 x 13 x 128) as an example
• Visualize as 128 grayscale images with size 13 x 13

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. 58



Visualization of Activations (cont’d)

• Patches with maximum activation
• Run images through the network
• Record values of the selected channel
• Visualize image patches that correspond to

maximal activations 

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 59



Visualization of Activations (cont’d)

• Which pixels matter? Saliency via occlusion!
• Mask parts of the input image 

before feeding to CNN
• Check how much predicted probabilities change
• Are the results as exactly what you expect?

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 60



Activation maximization

• 𝜃𝜃: model parameters (already trained and fixed!)

• ℎ𝑖𝑖𝑖𝑖: the activation of a given unit 𝑖𝑖 from a given layer 𝑗𝑗 in the network

• 𝑥𝑥: input sample

• For a fix model 𝜃𝜃, performing gradient ascent in the input space
• Hyperparameters: learning rate / stopping criterion

61



• Magnifying the filter response!

Gradient Ascent
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• Magnifying the filter response!

Gradient Ascent
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Example Visualization of CNN Features

• Saliency via back propagation (by gradient ascent)

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models andSaliency Maps”, ICLR WS 2014. 64



Example Visualization of CNN Features

• Saliency via back propagation (by gradient ascent)
• If visualizing intermediate feature maps

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014 65



One More Remark Before Moving Forward:
Adversarial Examples

• Adversarial attack

66



One More Remark Before Moving Forward:
Adversarial Examples

• Basic ideas of producing adversarial attack
• Start from an arbitrary image (e.g., stop sign)
• Pick an category of interest (e.g., green light);

modify the input image via gradient ascent to max the score of that category
• Stop when the CNN is fooled 

Szegedy et al, “Intriguing properties of neural networks”, 2013 67



What’s to Be Covered Today…

• Convolutional Neural Networks
• Properties of CNN
• Selected variants of CNN
• Training CNN
• Visualizing CNN

• Segmentation
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Image Segmentation

• Goal: 
Group pixels into meaningful or perceptually similar regions

69



Segmentation for Object Proposal

“Selective Search” [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]
70



Segmentation via Clustering

• K-means clustering
• Mean-shift*

• Find modes of the following non-parametric density

*D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE PAMI 2002. 71



Superpixels

• A simpler task of image segmentation
• Divide an image into a large number of regions, 

such that each region lies within object boundaries.

• Examples
• Watershed
• Felzenszwalb and Huttenlocher graph-based
• Turbopixels
• SLIC
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Multiple Segmentations

• Don’t commit to one partitioning
• Hierarchical segmentation

• Occlusion boundaries hierarchy:
Hoiem et al. IJCV 2011  (uses trained classifier to merge)

• Pb+watershed hierarchy: Arbeleaz et al. CVPR 2009
• Selective search: FH + agglomerative clustering 
• Superpixel hierarchy 

• Varying segmentation parameters
• E.g., multiple graph-based segmentations or mean-shift segmentations

• Region proposals
• Propose seed superpixel, try to segment out object that contains it 

(Endres Hoiem ECCV 2010, Carreira Sminchisescu CVPR 2010)
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More Tasks in Segmentation

• Cosegmentation
• Segmenting common objects from multiple images

• Instance Segmentation
• Assign each pixel an object instance

74



A Practical Segmentation Task

• Semantic Segmentation
• Supervised learning
• Assign a class label to each pixel in the input image (i.e., pixel-level classification)
• Not like instance segmentation, do not differentiate instances; 

only care about pixel labels

75



Semantic Segmentation

• Sliding Window

76



Semantic Segmentation

• Fully Convolutional Nets
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Semantic Segmentation

• Fully Convolutional Nets (cont’d)
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In-Network Upsampling

• Unpooling
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In-Network Upsampling

• Max Unpooling
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In-Network Upsampling

• Learnable Upsampling: Transpose Convolution
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In-Network Upsampling

• Learnable Upsampling: Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
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In-Network Upsampling

• Transpose Convolution
• 1D example
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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In-Network Upsampling

• Transpose Convolution
• Example as matrix multiplication
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Fully Convolutional Networks (FCN)

• Remarks
• All layers are convolutional
• End-to-end training

87



Fully Convolutional Networks (FCN)

• More details
• Adapt existing classification network to fully convolutional forms
• Remove flatten layer and replace fully connected layers with conv layers
• Use transpose convolution to upsample pixel-wise classification results

88



Fully Convolutional Networks (FCN)
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Fully Convolutional Networks (FCN)

• Example
• VGG16-FCN32s
• Loss: pixel-wise cross-entropy
i.e., compute cross-entropy between each pixel and its label, and average over all of them 

VGG16 (Pretrained)

Input shape: 256 x 256

Coarse prediction shape: 8 x 8

Upsample 32x (transpose conv)

Pixel-wise prediction shape: 256 x 256

90



SegNet

“SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”  [link]

• Efficient architecture (memory + computation time)
• Upsampling reusing max-unpooling indices
• Reasonable results without performance boosting addition
• Comparable to FCN

91

https://arxiv.org/pdf/1511.00561.pdf


U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation  [link]
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Additional Remarks:
Enhanced Spatial Information

• For semantic segmentation, spatial information is of great importance
• It is desirable for the model to observe 

both the target pixel/region and its neighboring areas
• Atrous (or Dilated) Convolution

• Features across different scales should be considered
• Spatial Pyramid Pooling

93



Recap (1)

• Atrous (Dilated) Convolution
• Larger receptive field with the same kernel size
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Recap (2)

• Spatial Pyramid Pooling
• Integrating information viewed under different scales

95



Thus, we have…

• Atrous Spatial Pyramid Pooling
• Combines both techniques for producing enhanced spatial info

96



DeepLabv3+

Chen et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation," ECCV 2018
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What’s to Be Covered Today…

• Convolutional Neural Networks
• Properties of CNN
• Selected variants of CNN
• Training CNN
• Visualizing CNN

• Segmentation
• HW #1 is out & due Oct. 10th Mon 23:59
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