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What’s to Be Covered in This Lecture…

• From Probability to Bayes Decision Rule

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction 
• Training, testing, & validation
• Linear Classification
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Example: Testing/Screening of COVID-19
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Positive
for COVID

Negative
for COVID

Distributions between positive/negative test results (e.g., PCR, antibody, etc.)
- the further away from each other, the better
- e.g., more accurate COVID diagnosis



Bayesian Decision Theory

• Fundamental statistical approach to classification/detection tasks

• Take a 2-class classification/detection task as an example:
• Let’s see if a student would pass or fail the course of DLCV,

with a probabilistic variable ω (i.e., ω = ω1 for pass, and ω = ω2 for fail)

• Prior Probability
• The a priori or prior probability reflects the knowledge of 

how likely we expect a certain state of nature before observation.
• P(ω = ω1) or simply P(ω1) as the prior that the next student would pass DLCV.
• The priors must exhibit exclusivity and exhaustivity, i.e., 

• Decision rule based on priors only
• If the only available info is the prior, what would be a reasonable decision rule?
• Decide ω1 if

otherwise decide ω2 .
• What’s the incorrect classification rate (or error rate) Pe?
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Class-Conditional Probability Density (or Likelihood)

• The probability density function (PDF) or class-conditional density 
for input/observation x given a state of nature ω is written as:

• Here’s (hopefully) the hypothetical class-conditional densities 
reflecting the time of the students spending on DLCV who eventually pass/fail this course.
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Posterior Probability & Bayes Formula

• If we know the prior distribution and the class-conditional density, 
can we come up with a better decision rule?

• Yes We Can! 
• By calculating the posterior probability.

• Bayes formula:
𝑃𝑃 𝜔𝜔𝑗𝑗,𝒙𝒙

𝑃𝑃(𝜔𝜔𝑗𝑗|𝒙𝒙)

And, we have ∑𝑗𝑗=1𝐶𝐶 𝑃𝑃(𝜔𝜔𝑗𝑗|𝒙𝒙) = 1.

• Remark: Posterior probability 𝑃𝑃(𝜔𝜔|𝒙𝒙)
• The probability of a certain state of nature ω given an observable x.
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Decision Rule & Probability of Error

• For a given observable x (e.g., # of GPUs), 
the decision rule (to take DLCV or not) will be now based on:

• Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

• Receiver Operating Characteristics (ROC)
• To assess the effectiveness of the designed features/classifiers
• False alarm (PFA or FP) vs. detection (Pd or TP) rates
• Which curve/line makes sense? (a), (b), or (c)?
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From Bayes Decision Rule to Detection Theory

• Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

• Receiver Operating Characteristics (ROC)
• To assess the effectiveness of the designed features/classifiers
• False alarm (PFA or FP) vs. detection (Pd or TP) rates
• Which curve/line makes sense? (a), (b), or (c)?
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction 
• Training, testing, & validation
• Linear Classification
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Clustering

• Clustering is an unsupervised algorithm.
• Given:  

a set of N unlabeled instances {x1, …, xN}; # of clusters K
• Goal: group the samples into K partitions

• Remarks:
• High within-cluster (intra-cluster) similarity
• Low between-cluster (inter-cluster) similarity
• But…how to determine a proper similarity measure?
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Similarity is NOT Always Objective…
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Clustering (cont’d) 

• Similarity:
• A key component/measure to perform data clustering
• Inversely proportional to distance
• Example distance metrics:

• Euclidean distance (L2 norm): 𝑑𝑑 𝑥𝑥, 𝑧𝑧 = 𝑥𝑥 − 𝑧𝑧 2 = ∑𝑖𝑖=1𝐷𝐷 𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖 2

• Manhattan distance (L1 norm): 𝑑𝑑 𝑥𝑥, 𝑧𝑧 = 𝑥𝑥 − 𝑧𝑧 1 = ∑𝑖𝑖=1𝐷𝐷 𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖

• Note that p-norm of x is denoted as:
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K-Means Clustering

• Input: N examples {x1, . . . , xN } (xn ∈RD ); number of partitions K
• Initialize: K cluster centers µ1, . . . , µK . Several initialization options:

• Randomly initialize µ1, . . . , µK anywhere in RD

• Or, simply choose any K examples as the cluster centers
• Iterate:

• Assign each of example xn to its closest cluster center
• Recompute the new cluster centers µk (mean/centroid of the set Ck )
• Repeat while not converge

• Possible convergence criteria:
• Cluster centers do not change anymore
• Max. number of iterations reached

• Output:
• K clusters (with centers/means of each cluster)
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K-Means Clustering

• Example (K = 2): Initialization, iteration #1: pick cluster centers
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K-Means Clustering

• Example (K = 2): iteration #1-2, assign data to each cluster
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K-Means Clustering

• Example (K = 2): iteration #2-1, update cluster centers
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K-Means Clustering

• Example (K = 2): iteration #2, assign data to each cluster

17



K-Means Clustering

• Example (K = 2): iteration #3-1
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K-Means Clustering

• Example (K = 2): iteration #3-2
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K-Means Clustering

• Example (K = 2): iteration #4-1
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K-Means Clustering

• Example (K = 2): iteration #4-2
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K-Means Clustering

• Example (K = 2): iteration #5, cluster means are not changed.
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K-Means Clustering (cont’d)
• Easy to implement, but…

• Preferable for round shaped clusters with similar sizes

• Limitations
• Sensitive to initialization →
• Sensitive to outliers →
• Hard assignment only  →

• Remarks
• Expectation-maximization (EM) algorithm
• Speed-up possible by hierarchical clustering (e.g., 100 = 102 clusters)
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction 
• Training, testing, & validation
• Linear Classification
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Hyperparameters in ML

• In many cases, we need to determine the model (hyper)parameters in advance. 
• E.g., for k-NN (k-nearest neighbor classifier), what is the best k value?
• We need to determine such hyperparameters in an educated way instead of guessing.
• Let’s see what we should do for hyperparameter selection.
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Image credit: Stanford CS231n



How to Determine Hyperparameters? 

• Use of validation data!
• For the dataset of interest, it is split it into training, validation, and test sets.
• You train your model with possible hyperparameter choices (k in k-NN), 

and select those work best on the validation set.
• OK, but…
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How to Determine Hyperparameters? (cont’d)

• What if validation data not available?
• Cross-validation (or k-fold cross validation)

• Split the training set into k folds with a hyperparameter choice
• Keep 1 fold as validation set and the remaining k-1 folds for training
• After each of k folds is evaluated, report the average validation performance.
• Choose the hyperparameter(s) w/ the best average validation performance,

followed by training the model using the entire training set.
• Never access the test set during training!

• E.g., a 4-fold cross-validation
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Minor Remarks on NN-based Methods

• k-NN is easy to implement but not of much interest in practice. Why?
• Choice of distance metrics might be an issue (see example below)
• Measuring distances in high-dimensional spaces might not be a good idea.
• Moreover, NN-based methods require lots of                  and                              !

(NN-based methods are viewed as data-driven approaches.)

29Image credit: Stanford CS231n

All three images have the same Euclidean distance to the original one.



What’s to Be Covered in This Lecture…

• From Probability to Bayes Decision Rule

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction 
• Training, testing, & validation
• Linear Classification

30



Linear Classification
• Linear Classifier

• Can be viewed as a parametric or algebraic approach. Why?
• Consider that we have 10 object categories of interest

• E.g., CIFAR10 with 50K training & 10K test images of 10 categories.
And, each image is of size 32 x 32 x 3 pixels.
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Linear Classification (cont’d)
• Linear Classifier

• Can be viewed as a parametric or algebraic approach. Why?
• Consider that we have 10 object categories of interest
• Let’s take the input image as x, and the linear classifier as W. 

We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.

32Image credit: Stanford CS231n
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Linear Classification (cont’d)
• Linear Classifier

• Can be viewed as a parametric or algebraic approach. Why?
• Consider that we have 10 object categories of interest
• Let’s take the input image as x, and the linear classifier as W. 

We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.
• For example, an image with 2 x 2 pixels & 3 classes of interest

we need to learn a linear classifier W (plus a bias b),
so that desirable outputs y = Wx + b can be expected. 

33Image credit: Stanford CS231n



Remarks
• Interpreting W in y = Wx + b

• The weights in W are learned by 
observing training data X and their ground truth Y.

• Each row in W can be viewed as an exemplar of the corresponding class.
• Thus, Wx basically performs inner product (or correlation) between 

the input x and the exemplar of each class, reflecting the corresponding similarity.
• How to determine a proper loss function for matching y and Wx+b, 

so that W can be learned by observing training data?
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Loss Function

• Loss is a function of model parameter W
• AKA objective function, cost function, etc.
• Tells us how good/bad our learned model W in y = Wx + b is. (The lower, the better!)
• Given a labeled dataset

where x and y indicate the input instance and its label, respectively,

Loss of a single input instance is denoted as ,

and that for the entire dataset is the sum or average of per-instance losses:

.

• In practice, calculating full sum for L is expensive.
• Approximate sum using a minibatch of instances (e.g., 32, 64, 128 samples, etc.)

35Slide credit: UMich EECS 498-007



Loss Function (cont’d)

• Cross-Entropy Loss (Multinomial Logistic Regression)
• Interpret classifier scores as probabilities
• Softmax function:

• with as the classifier output for input xi

• See example below

36Slide credit: UMich EECS 498-007

Lcat = -log(0.13) = 2.04

What about this L?
What are its possibly min/max value??



• Cross-Entropy Loss (cont’d)
• Softmax function:

• with as the classifier output for input xi

or

• (Binary) Cross Entropy Loss (or LBCE; see example below):

37Slide credit: UMich EECS 498-007



• Searching for W from LBCE

• Computing gradients:
Following the slope to reach the (hopefully global) minimum for W.

• Gradient Descent via numeric or analytic gradients:
• Iteratively step in the direction of the negative gradient & search for W
• Hyperparameters: weight initialization, # of steps, learning rate, etc.

• Stochastic Gradient Descent
• Full sum in L is expensive when large N
• Approximate sum using a minibatch of instances (e.g., 32, 64, 128, etc.)
• Additional hyperparameters of batch size and data sampling

38Slide credit: UMich EECS 498-007



What’s to Be Covered in This Lecture…

• From Probability to Bayes Decision Rule

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction 
• Training, testing, & validation
• Linear Classification
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