Deep Learning for Computer Vision

Fall 2022

https://cool.ntu.edu.tw/courses/189345 (NTU COOL)

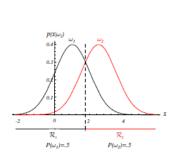
http://vllab.ee.ntu.edu.tw/dlcv.html (Public website)

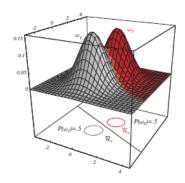
Yu-Chiang Frank Wang 王鈺強, Professor Dept. Electrical Engineering, National Taiwan University

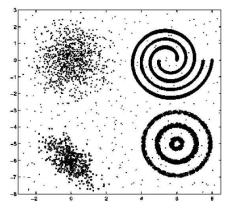
2022/09/06

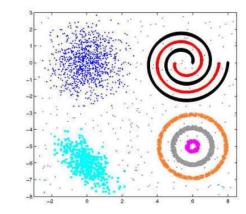
What's to Be Covered in This Lecture...

- From Probability to Bayes Decision Rule
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification





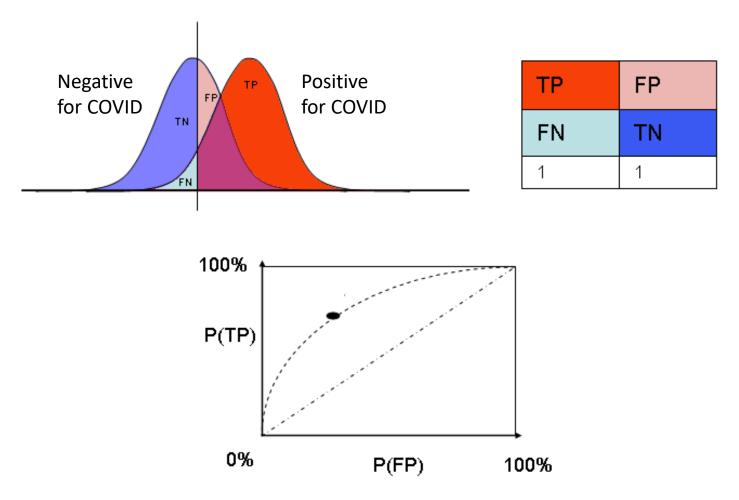




Example: Testing/Screening of COVID-19

Distributions between **positive/negative** test results (e.g., PCR, antibody, etc.)

- the further away from each other, the better
- e.g., more accurate COVID diagnosis



Bayesian Decision Theory

- Fundamental statistical approach to classification/detection tasks
- Take a 2-class classification/detection task as an example:
 - Let's see if a student would pass or fail the course of DLCV, with a probabilistic variable ω (i.e., $\omega = \omega_1$ for pass, and $\omega = \omega_2$ for fail)
- Prior Probability
 - The **a priori** or **prior** probability reflects the knowledge of how likely we expect a certain state of nature before observation.
 - $P(\omega = \omega_1)$ or simply $P(\omega_1)$ as the **prior** that the next student would pass DLCV.
 - The priors must exhibit *exclusivity* and *exhaustivity*, i.e.,
- Decision rule based on priors only
 - If the only available info is the prior, what would be a reasonable decision rule?
 - Decide ω_1 if

otherwise decide ω_2 .

• What's the incorrect classification rate (or error rate) P_e?

Class-Conditional Probability Density (or Likelihood)

• The probability density function (PDF) or class-conditional density for input/observation **x** given a state of nature ω is written as:

• Here's (hopefully) the hypothetical class-conditional densities reflecting the time of the students spending on DLCV who eventually pass/fail this course.

Posterior Probability & Bayes Formula

- If we know the prior distribution and the class-conditional density, can we come up with a better decision rule?
 - Yes We Can!
 - By calculating the posterior probability.
- Bayes formula: $P(\omega_j, x)$

 $P(\omega_j | \boldsymbol{x})$

And, we have $\sum_{j=1}^{C} P(\omega_j | \mathbf{x}) = 1$.

- Remark: Posterior probability $P(\omega|\mathbf{x})$
 - The probability of a certain state of nature ω given an observable **x**.

Decision Rule & Probability of Error

 For a given observable x (e.g., # of GPUs), the decision rule (to take DLCV or not) will be now based on:

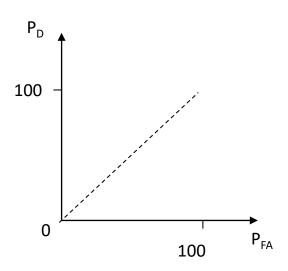
- YOU SHALL NOT PASS
- Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

- Receiver Operating Characteristics (ROC)
 - To assess the effectiveness of the designed features/classifiers
 - False alarm (P_{FA} or FP) vs. detection (P_d or TP) rates
 - Which curve/line makes sense? (a), (b), or (c)?

From Bayes Decision Rule to Detection Theory

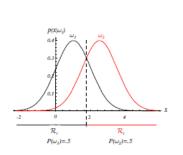
• Hit (detection, TP), false alarm (FA, FP), miss (false reject, FN), rejection (TN)

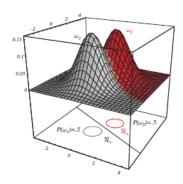
- To assess the effectiveness of the designed features/classifiers
- False alarm (P_{FA} or FP) vs. detection (P_d or TP) rates
- Which curve/line makes sense? (a), (b), or (c)?

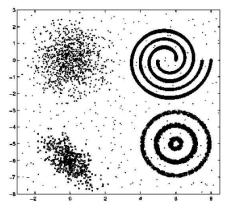


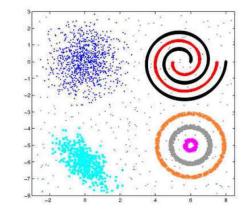
What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification



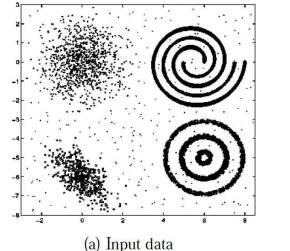


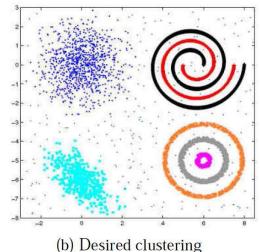




Clustering

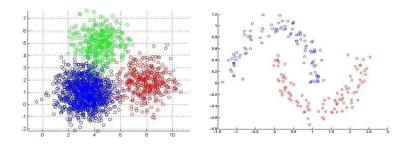
- Clustering is an unsupervised algorithm.
 - Given:
 a set of N unlabeled instances {*x*₁, ..., *x*_N}; # of clusters K
 - Goal: group the samples into K partitions
- Remarks:
 - High within-cluster (intra-cluster) similarity
 - Low between-cluster (inter-cluster) similarity
 - But...how to determine a proper similarity measure?



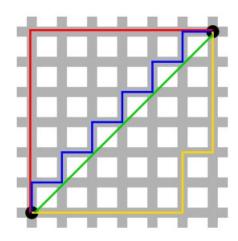


Similarity is NOT Always Objective...

Clustering (cont'd)

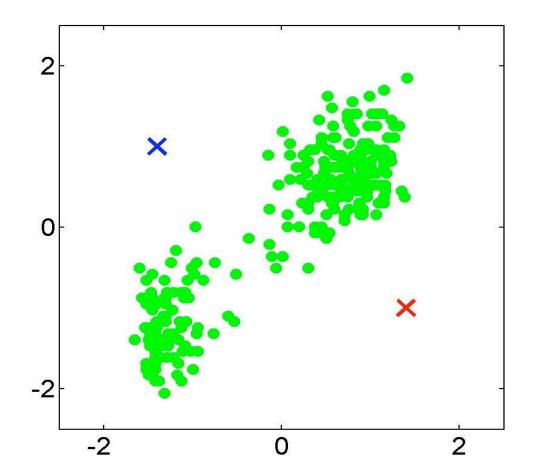


- Similarity:
 - A key component/measure to perform data clustering
 - Inversely proportional to distance
 - Example distance metrics:
 - Euclidean distance (L2 norm): $d(x, z) = ||x z||_2 = \sqrt{\sum_{i=1}^{D} (x_i z_i)^2}$
 - Manhattan distance (L1 norm): $d(x, z) = ||x z||_1 = \sum_{i=1}^{D} |x_i z_i|$
 - Note that *p*-norm of *x* is denoted as:

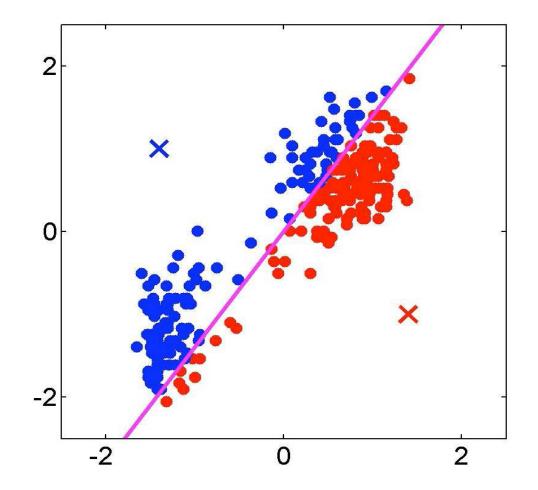


- Input: N examples $\{x_1, \ldots, x_N\}$ $(x_n \in \mathbb{R}^D)$; number of partitions K
- Initialize: *K* cluster centers μ_1, \ldots, μ_K . Several initialization options:
 - Randomly initialize μ_1, \ldots, μ_K anywhere in R^D
 - Or, simply choose any K examples as the cluster centers
- Iterate:
 - Assign each of example \boldsymbol{x}_n to its closest cluster center
 - Recompute the new cluster centers μ_k (mean/centroid of the set C_k)
 - Repeat while not converge
- Possible convergence criteria:
 - Cluster centers do not change anymore
 - Max. number of iterations reached
- Output:
 - *K* clusters (with centers/means of each cluster)

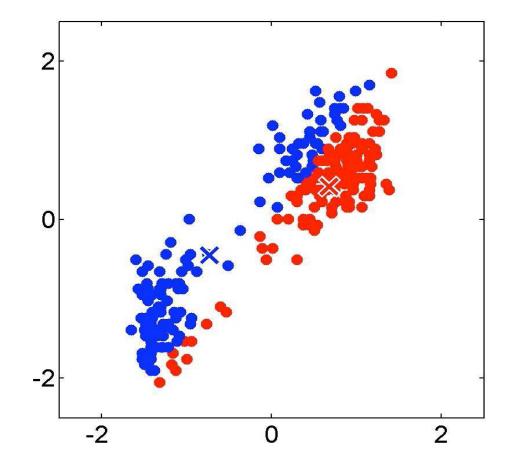
• Example (K = 2): Initialization, iteration #1: pick cluster centers



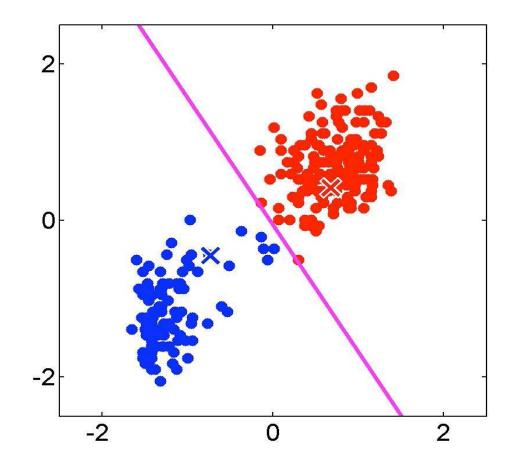
• Example (K = 2): iteration #1-2, assign data to each cluster



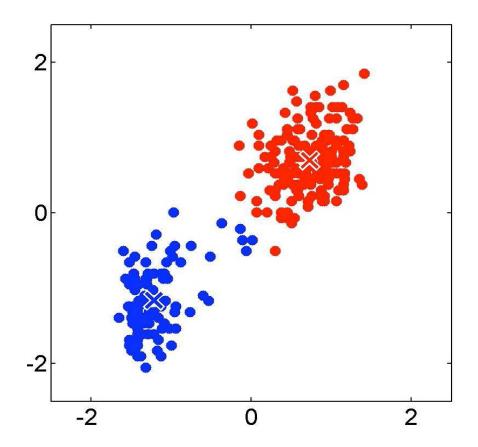
• Example (K = 2): iteration #2-1, update cluster centers



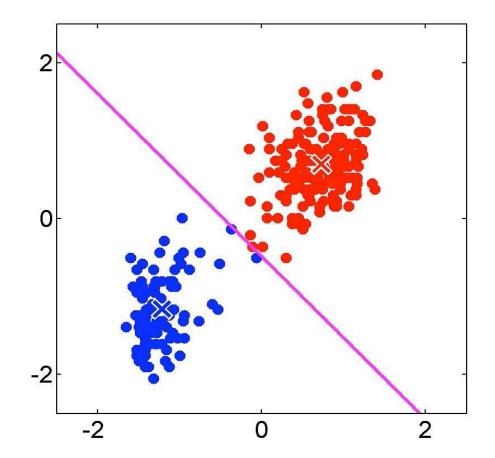
• Example (K = 2): iteration #2, assign data to each cluster



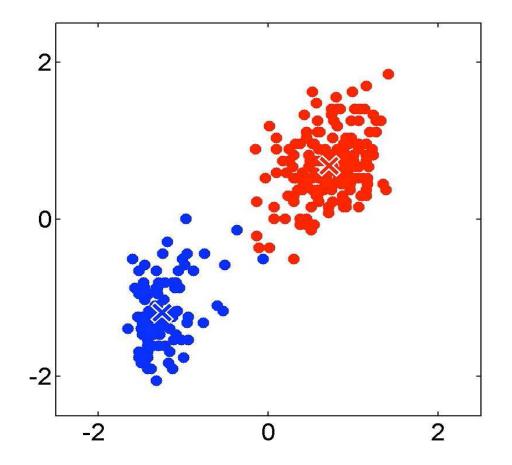
• Example (K = 2): iteration #3-1



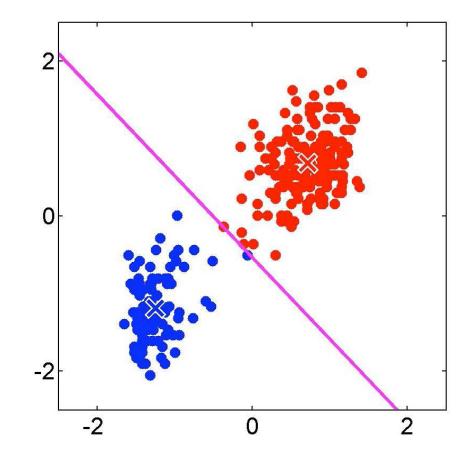
• Example (K = 2): iteration #3-2



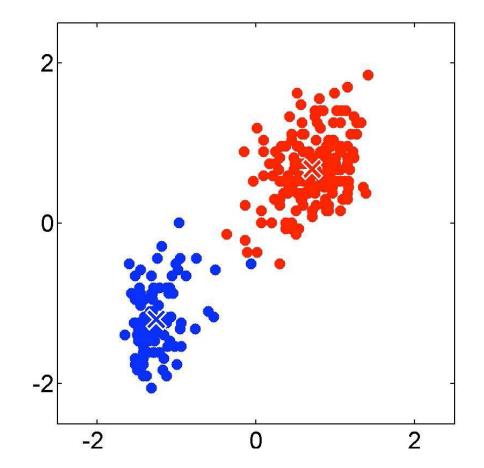
• Example (K = 2): iteration #4-1



• Example (K = 2): iteration #4-2

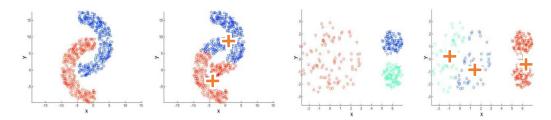


• Example (K = 2): iteration #5, cluster means are not changed.



K-Means Clustering (cont'd)

- Easy to implement, but...
 - Preferable for round shaped clusters with similar sizes

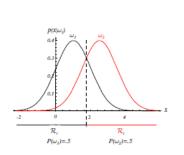


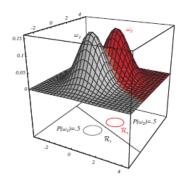
- Limitations
 - Sensitive to initialization \rightarrow
 - Sensitive to outliers \rightarrow
 - Hard assignment only \rightarrow

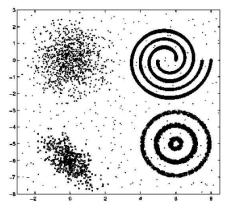
- Remarks
 - Expectation-maximization (EM) algorithm
 - Speed-up possible by hierarchical clustering (e.g., 100 = 10² clusters)

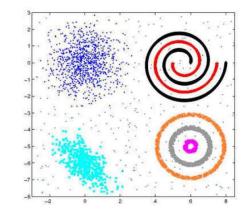
What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification



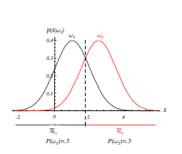


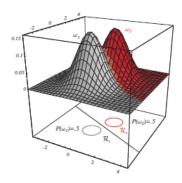


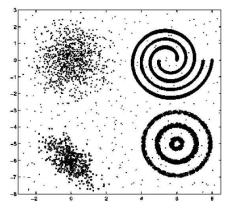


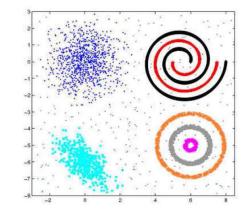
What's to Be Covered Today...

- From Probability to Bayes Decision Rule
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification



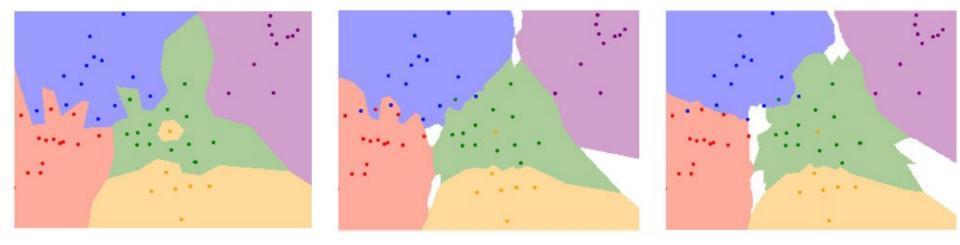






Hyperparameters in ML

- In many cases, we need to determine the model (hyper)parameters in advance.
 - E.g., for k-NN (k-nearest neighbor classifier), what is the best k value?
 - We need to determine such hyperparameters in an educated way instead of guessing.
 - Let's see what we should do for hyperparameter selection.



k = 1

How to Determine Hyperparameters?

- Use of validation data!
 - For the dataset of interest, it is split it into training, validation, and test sets.
 - You train your model with possible hyperparameter choices (k in k-NN), and select those work best on the validation set.
 - OK, but...

Training set	Validation set	Test set	
Training set	Validation set	Test set	

How to Determine Hyperparameters? (cont'd)

- What if validation data not available?
 - **Cross-validation** (or *k-fold* cross validation)
 - Split the training set into k folds with a hyperparameter choice
 - Keep 1 fold as *validation set* and the remaining k-1 folds for *training*
 - After each of k folds is evaluated, report the average validation performance.
 - Choose the hyperparameter(s) w/ the best average validation performance, followed by training the model using the entire training set.
 - Never access the test set during training!
 - E.g., a 4-fold cross-validation

Training set			Test set	
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set
Fold 1	Fold 2	Fold 3	Fold 4	Test set

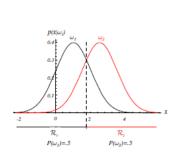
Minor Remarks on NN-based Methods

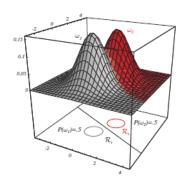
- k-NN is easy to implement but not of much interest in practice. Why?
 - Choice of distance metrics might be an issue (see example below)
 - Measuring distances in high-dimensional spaces might not be a good idea.
 - Moreover, NN-based methods require lots of and !
 (NN-based methods are viewed as *data-driven* approaches.)

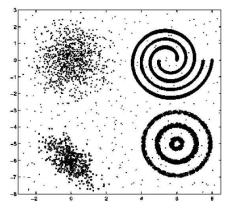
All three images have the same Euclidean distance to the original one.

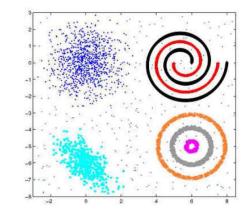
What's to Be Covered in This Lecture...

- From Probability to Bayes Decision Rule
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification



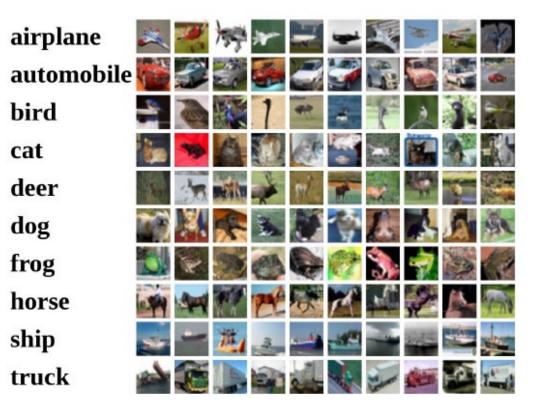






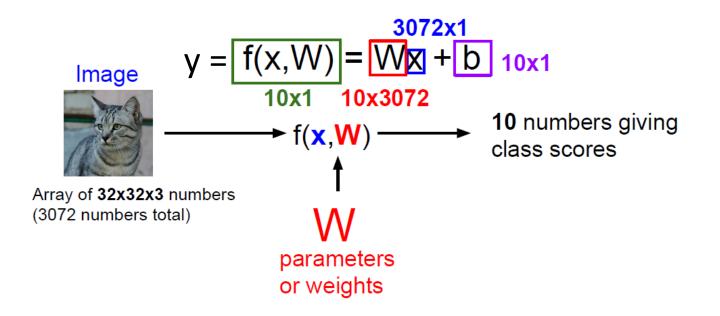
Linear Classification

- Linear Classifier
 - Can be viewed as a parametric or algebraic approach. Why?
 - Consider that we have 10 object categories of interest
 - E.g., CIFAR10 with 50K training & 10K test images of 10 categories. And, each image is of size 32 x 32 x 3 pixels.



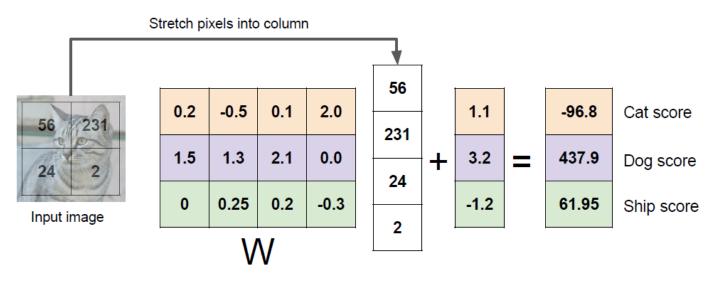
Linear Classification (cont'd)

- Linear Classifier
 - Can be viewed as a parametric or algebraic approach. Why?
 - Consider that we have 10 object categories of interest
 - Let's take the input image as x, and the linear classifier as W.
 We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.



Linear Classification (cont'd)

- Linear Classifier
 - Can be viewed as a parametric or algebraic approach. Why?
 - Consider that we have 10 object categories of interest
 - Let's take the input image as x, and the linear classifier as W.
 We need y = Wx + b as a 10-dimensional output vector, indicating the score for each class.
 - For example, an image with 2 x 2 pixels & 3 classes of interest we need to learn a linear classifier W (plus a bias b), so that desirable outputs y = Wx + b can be expected.



Remarks

- Interpreting **W** in $\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b}$
 - The weights in **W** are learned by observing training data **X** and their ground truth **Y**.
 - Each row in **W** can be viewed as an exemplar of the corresponding class. ٠
 - Thus, **Wx** basically performs inner product (or correlation) between the input **x** and the exemplar of each class, reflecting the corresponding *similarity*.
 - How to determine a proper loss function for matching y and Wx+b, so that **W** can be learned by observing training data? airplane

3072x1

10x1

10 numbers giving

class scores

= $W_{X} + b$

f(x.W

10x1 10x3072

► f(x,W)

parameters or weights

Image

Arrav of 32x32x3 numbers (3072 numbers total)

> bird cat deer dog frog horse ship truck

Loss Function

• Loss is a function of model parameter W

- AKA objective function, cost function, etc.
- Tells us how good/bad our learned model W in y = Wx + b is. (The lower, the better!)
- Given a labeled dataset $\{(x_i, y_i)\}_{i=1}^N$ where **x** and **y** indicate the input instance and its label, respectively,

Loss of a single input instance is denoted as $L_i(f(x_i, W), y_i)$,

and that for the entire dataset is the sum or average of per-instance losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i) .$$

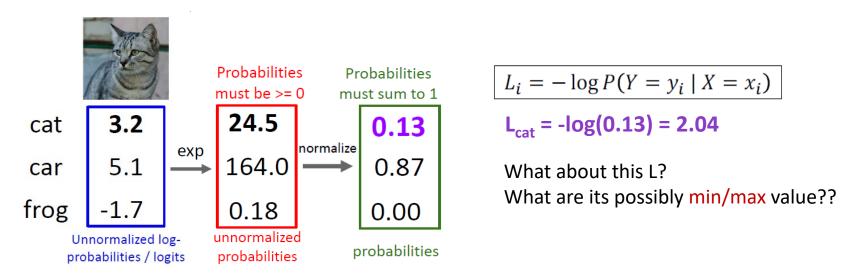
- In practice, calculating full sum for L is expensive.
 - Approximate sum using a minibatch of instances (e.g., 32, 64, 128 samples, etc.)

Loss Function (cont'd)

- Cross-Entropy Loss (Multinomial Logistic Regression)
 - Interpret classifier scores as probabilities
 - Softmax function:

 $P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \text{ with } s = f(x_i; W) \text{ as the classifier output for input } \mathbf{x}_i$

• See example below

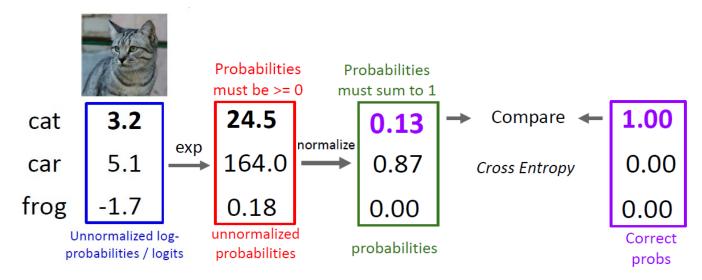


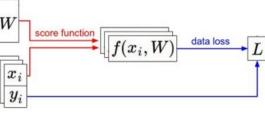
- Cross-Entropy Loss (cont'd)
 - Softmax function:

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \text{ with } s = f(x_i; W) \text{ as the classifier output for input } \mathbf{x}$$

$$\downarrow L_i = -\log P(Y = y_i \mid X = x_i) \text{ or } L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

• (Binary) Cross Entropy Loss (or L_{BCE}; see example below):



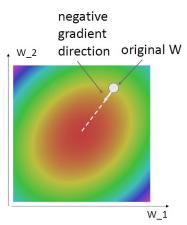


- Searching for W from L_{BCE}
 - Computing gradients:
 Following the slope to reach the (hopefully global) minimum for W.
 - Gradient Descent via numeric or analytic gradients:
 - Iteratively step in the direction of the negative gradient & search for W
 - Hyperparameters: weight initialization, # of steps, learning rate, etc.

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```

- Stochastic Gradient Descent
 - Full sum in L is expensive when large N
 - Approximate sum using a minibatch of instances (e.g., 32, 64, 128, etc.)
 - Additional hyperparameters of batch size and data sampling

```
# Stochastic gradient descent
w = initialize_weights()
for t in range(num_steps):
    minibatch = sample_data(data, batch_size)
    dw = compute_gradient(loss_fn, minibatch, w)
    w -= learning_rate * dw
```



What's to Be Covered in This Lecture...

- From Probability to Bayes Decision Rule
- Unsupervised vs. Supervised Learning
 - Clustering & Dimension Reduction
 - Training, testing, & validation
 - Linear Classification

