Graph Theory I

Shagnik Das NTU

Fall 2021

Chapter 2: Trees

- 1. Definitions
- 2. Equivalent characterisations
- 3. Cayley's formula Prüfer code

§2.1: Definitions

- 1. Definitions
 - Forests, trees and leaves
 - Finding leaves
- 2. Equivalent characterisations
- 3. Cayley's formula Prüfer code

Forests, trees and leaves

Definitions

A forest is a graph without cycles (acyclic).

A tree is a connected acyclic graph.

A leaf (or pendant vertex) is a vertex of degree 1.

Finding leaves

Lemma

Every finite tree T with at least two vertices has at least two leaves.

Proof

Let P be a longest path in T

- T connected, $v(T) \ge 2 \Rightarrow e(P) \ge 1$
- Longest path \Rightarrow endpoints' neighbours are all on P
- If endpoints have multiple neighbours \Rightarrow cycle in T
- \Rightarrow both endpoints are leaves

Losing leaves

Lemma

Deleting a leaf from an n-vertex tree yields an (n-1)-vertex tree.

Proof

Let v be a leaf, $T' = T \setminus v$ the subgraph after deleting v

- T' is connected:
 - ▶ Let $u, w \in V(T')$
 - ightharpoonup T connected \Rightarrow there is a u, w-path P in T
 - $ightharpoonup d(v) = 1 \Rightarrow v \text{ is not on } P$
 - $\Rightarrow P \subseteq T'$
- T' is acyclic:
 - ► T is acyclic
 - ► Deleting a vertex cannot create a cycle
- \Rightarrow T' is a tree, and v(T') = v(T) 1 = n 1

§2.2: Equivalent characterisations

- 1. Definitions
- 2. Equivalent characterisations
 - Statements
 - Cut-edges
 - Proving equivalence
 - Consequences
- 3. Cayley's formula Prüfer code

Statements

Question

Can we easily recognise trees?

Theorem

For an n-vertex simple graph G, the following are equivalent:

- (a) G is connected and acyclic (i.e. G is a tree).
- (b) G is connected and has n-1 edges.
- (c) G is acyclic and has n-1 edges.
- (d) For every pair $u, v \in V(G)$, there is exactly one u, v-path in G.

Cut-edges

Definition

An edge of a connected graph is called a cut-edge if deleting it disconnects the graph.

Lemma

An edge in a cycle is not a cut-edge.

- Let $\{u,v\}$ belong to a cycle, $u,u_1,u_2,\ldots,u_{k-1},v,u_k$
- If $\{u, v\}$ not on a path P, path still exists without the edge
- If $\{u, v\}$ is an edge of P:
 - ► Replace $\{\overline{u,v}\}$ in the path with u,u_1,\ldots,u_{k-1},v
 - ightharpoonup Gives a walk between endpoints avoiding $\{u, v\}$
- \Rightarrow Graph is still connected after deleting $\{u, v\}$

Proving equivalence

Theorem

For an n-vertex simple graph G, the following are equivalent:

- (a) G is connected and acyclic (i.e. G is a tree).
- (b) G is connected and has n-1 edges.
- (c) G is acyclic and has n-1 edges.
- (d) For every pair $u, v \in V(G)$, there is exactly one u, v-path in G.

Strategy

- 1. Show any two of {'connected', 'acyclic', 'has n-1 edges'} implies the third
 - \Rightarrow (a), (b) and (c) are equivalent
- 2. Show (a) and (d) are equivalent

Step 1: (a) \Rightarrow (b), (c)

Claim

If G is connected and acyclic, then e(G) = n - 1.

Proof

Induction on n = v(G)

- Base case: n=1
 - ► Cannot have any edges $\Rightarrow e(G) = 0$
- Induction step: $n \ge 2$
 - ightharpoonup Lemma: there is a leaf v, and $G \setminus v$ is a tree
 - ▶ Induction $\Rightarrow e(G \setminus v) = n 2$
 - ightharpoonup v incident to exactly one edge in $G \Rightarrow e(G) = n-1$

Step 1: (b) \Rightarrow (a), (c)

Claim

If G is connected and e(G) = n - 1, then G is acyclic.

Proof

Let G be a connected graph with n-1 edges

- Iteratively remove an edge from every cycle
 - ► Edges in cycles are not cut-edges
 - \Rightarrow Resulting graph G' is still connected
- G' connected, acyclic $\Rightarrow e(G') = n-1$ $\Rightarrow G' = G$
 - \Rightarrow G is acyclic

Step 1: (c) \Rightarrow (a), (b)

Claim

If G is acyclic and e(G) = n - 1, then G is connected.

Proof

Suppose G has components G_1, G_2, \ldots, G_k of order n_1, n_2, \ldots, n_k

- Each component G_i is connected, acyclic $\Rightarrow e(G_i) = n_i - 1$

$$\Rightarrow e(G) = \sum_{i} e(G_{i}) = \sum_{i} (n_{i} - 1) = \sum_{i} n_{i} - k = n - k$$

 $\Rightarrow k = 1$
 $\Rightarrow G$ is connected

ш

Step 2: $(a) \Rightarrow (d)$

Claim

If G is connected and acyclic, then for every pair $u, v \in V(G)$, there is exactly one u, v-path in G.

- G connected \Rightarrow there is at least one u, v-path
- Suppose there are two distinct paths P and Q
- Let $\{x,y\}$ be an edge in P that is not in Q
 - $\Rightarrow P \cup Q \setminus \{\{x,y\}\}$ is an x,y-walk not using $\{x,y\}$
 - \Rightarrow contains an x, y-path
- Adding the edge $\{x, y\}$ would create a cycle

Step 2: $(d) \Rightarrow (a)$

Claim

If, for every pair $u, v \in V(G)$, there is exactly one u, v-path in G, then G is connected and acyclic.

- G is connected:
 - ► There is a path between every pair of vertices
- G is acyclic:
 - ightharpoonup Suppose there was a cycle C in G
 - ► Any pair of vertices on the cycle would have two paths along the cycle

Consequences

Definition

Given a connected graph G, a spanning tree T is a subgraph of G that is a tree containing every vertex of G.

Corollary

- (a) Every n-vertex connected graph has at least n-1 edges and contains a spanning tree.
- (b) Every edge of a tree is a cut-edge.
- (c) Adding an edge to a tree creates exactly one cycle.

Proving the consequences: (a)

Claim

Every n-vertex connected graph has at least n-1 edges and contains a spanning tree.

- Iteratively remove an edge from cycles in G
 - ► These are not cut-edges
 - \Rightarrow final graph G' is still connected
- G' is connected and acyclic \Rightarrow it is a spanning tree
- Lemma $\Rightarrow e(G) \geq e(G') = n-1$

Proving the consequences: (b) & (c)

Claim

Every edge of a tree is a cut-edge.

Proof

- Deleting an edge \rightarrow graph with n-2 edges
- \Rightarrow Cannot be connected \Rightarrow edge was a cut-edge

Claim

Adding an edge $\{u, v\}$ to a tree T creates exactly one cycle.

- Every cycle C must involve the edge $\{u, v\}$
- \Rightarrow Gives a u, v-path $C \setminus \{\{u, v\}\}\}$
 - Unique such path ⇒ unique cycle created

§2.3: Cayley's formula — Prüfer code

- 1. Definitions
- 2. Equivalent characterisations
- 3. Cayley's formula Prüfer code
 - Counting trees
 - The Prüfer code
 - The inverse map

Counting trees

Question

How many labelled trees on n vertices are there? Equivalently, how many spanning trees does K_n have?

Initial bounds

- At most the number of n-vertex graphs
 - # trees $\leq 2^{\binom{n}{2}} = 2^{\Theta(n^2)}$
- At most the number of *n*-vertex graphs of size n-1

$$\# \text{ trees} \leq \binom{\binom{n}{2}}{n-1} \leq \left(\frac{\binom{n}{2}e}{n-1}\right)^{n-1} = \left(\frac{ne}{2}\right)^{n-1} = 2^{\Theta(n\log n)}$$

Theorem (Cayley's Formula; Borchardt, 1860)

The number of labelled n-vertex trees is n^{n-2} .

Proof overview

Strategy

- Removing a leaf from an n-vertex tree ightarrow (n-1)-vertex tree
- Will remove one leaf at a time, until we are left with an edge
- Record enough data about process so that it is reversible

Bijection

- n-vertex tree \leftrightarrow log of the process
- Log will be a sequence of length n-2 with entries in [n]
- $\Rightarrow n^{n-2}$ possible logs, each corresponds to a unique tree

The Prüfer code

The code

- 1. Remove the leaf with the lowest label
- 2. Record the label of its neighbour
- 3. Repeat until we are left with an edge

From all the leaves choose the one with the lowest label.Remove it f

The final o

Identifying leaves

The code: (7,4,4,1,7,1)

Claim

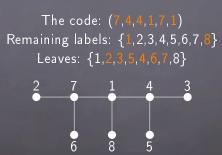
The leaves of T are the vertices that do not appear in the code.

- If *i* is a leaf:
 - ► If *i* appears in the code, its neighbour was deleted
 - ► Then *i* would be isolated, which is impossible
- If *i* is not a leaf:
 - ► A neighbour of *i* must have been deleted before *i* was
 - ► At this step, i would have been added to the code

The inverse map

Reconstructing the tree

- We can identify the leaf with the lowest label
- Code tells us which vertex was its neighbour
- Add the edge, then repeat with the remainder of the code



Thank you for listening!

Any questions?