Graph Theory I

Shagnik Das NTU

Fall 2021

Chapter 1: Fundamentals

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

§1.1: Graphs

- 1. Graphs
 - Definition
 - Terminology
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

Defining graphs

Informal description

- Vertices: objects in the network
- Edges: pairs that are connected in the network

Formal definition

A (simple) graph is a pair (V, E) of sets, where

- V is a set of vertices
- $E \subseteq \binom{V}{2}$ is a set of edges
- $\binom{V}{2}=\{\{u,v\}:u,v\in V,u
 eq v\}$: set of unordered pairs of vertices

Interpretation

Graphs can represent symmetric pairwise relations between objects.

Terminology

Graph parameters

- order: |V(G)| number of vertices
- size: e(G) = |E(G)| number of edges

Vertex-edge relations

- Vertices u, v are adjacent if $\{u, v\} \in E(G)$
- Edge $e \in E(G)$ is incident to vertex $v \in V(G)$ if $v \in e$
- Edges $e, e' \in E(G)$ are incident if $e \cap e' \neq \emptyset$
- If $u, v \in V(G)$ are adjacent, then v is a neighbour of u

Typical notation

Graphs

- Capital letters, usually around G
- G, H, F, \dots (sometimes Γ)

Vertices

- Lower-case letters, usually around v
- u, v, w, x, y, z, ...

Edges

- Lower-case letters, usually around e
- $-e, f, g, h, \dots$

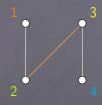
$\S 1.2$: Graph isomorphism

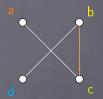
- 1. Graphs
- 2. Graph isomorphism
 - Example
 - Definition
 - Equivalence relation
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

Spot the difference

A motivating example

Are these graphs different?





A dictionary

Map between the vertex sets:

$$1 \leftrightarrow a$$
, $2 \leftrightarrow c$, $3 \leftrightarrow b$, $4 \leftrightarrow a$

Isomorphisms

Definition

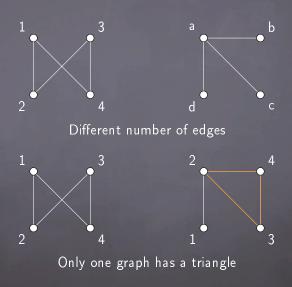
Given graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$, an isomorphism is a map $\varphi:V_1\to V_2$ is a bijection such that $\{u,v\}\in E_1$ if and only if $\{\varphi(u),\varphi(v)\}\in E_2$.

We say the graphs G_1 , G_2 are isomorphic.

Explanation

- Relabel vertices of the graphs so that they have the same edges
- Only care about the structure of the edges, not vertex names

Non-isomorphic examples



Equivalence relation

Claim

Isomorphism defines an equivalence relation on the set of graphs.

In other words...

- Any graph G is isomorphic to itself
- If G_1 is isomorphic to G_2 , then G_2 is isomorphic to G_1
- If G_1 is isomorphic to G_2 , and G_2 is isomorphic to G_3 , then G_1 is isomorphic to G_3

Unlabelled graphs

- Equivalence classes are unlabelled graphs
- We usually take the vertex set to be $[n] = \{1,2,\ldots,n\}$

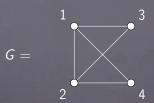
$\S 1.3\colon$ Matrix representations

- 1. Graphs
- 2. Graph isomorphism
- The adjacency and incidence matrices
 - Representing graphs
 - The adjacency matrix
 - The incidence matrix
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

Representing graphs

Drawing graphs

- Formal definition is not very convenient for presenting graphs e.g.: $G = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\})$
- Drawings can be much more readable



Problems with drawings

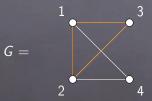
- Larger graphs can be too dense to be read
- Drawings are not very computer-friendly

The adjacency matrix

Definition

Let G = (V, E) be a graph, where V = [n]. The adjacency matrix A = A(G) is an $n \times n$ matrix defined by

$$a_{i,j} = \begin{cases} 1 & \text{if } \{i,j\} \in E, \\ 0 & \text{if } \{i,j\} \notin E. \end{cases}$$



$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

The incidence matrix

Definition

Let G=(V,E) be a graph, with $V=\{v_1,v_2,\ldots,v_n\}$ and $E=\{e_1,e_2,\ldots,e_m\}$. The incidence matrix B=B(G) is an $n\times m$ matrix defined by

$$b_{i,j} = \begin{cases} 1 & \text{if } v_i \in e_j, \\ 0 & \text{if } v_i \notin e_j. \end{cases}$$

$$B = egin{pmatrix} 1 & 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

§1.4: Degrees

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
 - Definition
 - Extreme values
 - Handshake Lemma
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

Definition

Motivation: isomorphic graphs

- Suppose $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic \Rightarrow they have the same number of edges
- More is true: if $\varphi:V_1\to V_2$ is an isomorphism, $v\in V_1$ and $\varphi(v)\in V_2$ are incident to the same number of edges

Definitions

Given a graph G = (V, E) and a vertex $v \in V$, the neighbourhood N(v) of v is the set its neighbours: $N(v) = \{u \in V : \{u, v\} \in E\}$.

The degree d(v) of v is the number of neighbours: d(v) = |N(v)|.

A vertex is isolated if it has no neighbours.

Connection to matrices

Observation

The degree d(v) is the number of ones in the row corresponding to v in either the adjacency matrix A(G) or the incidence matrix B(G).

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$d(1) = 3, d(2) = 2, d(3) = 2, d(4) = 1, d(5) = 0$$

Extreme values

Definition

We say a graph $\mathit{G} = (\mathit{V}, \mathit{E})$ is d -regular if $\mathit{d}(\mathit{v}) = \mathit{d}$ for all $\mathit{v} \in \mathit{V}$.

Notation

Let G = (V, E) be an *n*-vertex graph.

- The minimum degree is $\delta(G) = \min\{d(v) : v \in V\}$
- The maximum degree is $\Delta(G) = \max\{d(v) : v \in V\}$
- The average degree is

$$\bar{d}(G) = \frac{1}{n} \sum_{v \in V} d(v)$$

Observation

Trivially, for all $v \in V$, $\delta(G) \le d(v) \le \Delta(G)$. Thus, $\delta(G) \le \bar{d}(G) \le \Delta(G)$.

Handshake Lemma

Proposition

For every graph G = (V, E), we have $\sum_{v \in V} d(v) = 2e(G)$.

Proof

- Summing over vertices vs summing over edges
 ⇒ count vertex-edge incidences
- We count the number of pairs $(v,e) \in V \times E$, where $v \in e$
- Every vertex v is in d(v) edges $\Rightarrow \sum_{v \in V} d(v)$ pairs
- Every edge e contains 2 vertices $\Rightarrow 2e(G)$ pairs

$$\Rightarrow \sum_{v \in V} d(v) = 2e(G)$$

Consequences

Proposition

For every graph G = (V, E), we have $\sum_{v \in V} d(v) = 2e(G)$.

Corollary

Every graph G has an even number of vertices of odd degree.

Can use this to rule out the existence of certain graphs

Corollary

There is no 3-regular graph on 9 vertices.

§1.5: Subgraphs

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
 - Types of subgraphs
 - Examples
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

Types of subgraphs

It is often necessary to focus on a smaller part of a graph

Subgraph

A graph H=(U,F) is a subgraph of a graph G=(V,E) if $U\subseteq V$ and $F\subseteq \binom{U}{2}\cap E$.

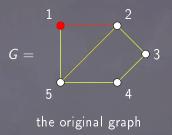
Spanning

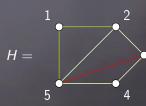
A subgraph H = (U, F) of a graph G = (V, E) is spanning if U = V.

Induced

A subgraph H = (U, F) of a graph G = (V, E) is induced if $F = {U \choose 2} \cap E$. We write H = G[U].

Examples





Hello worldSubgraph: not induced, not spanninginduced subgraph, not spanninginduced subgraph, not spanninginduced subgraph.

§1.6: Special graphs

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
 - Graph classes
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters

Graph classes

The following types of graphs are of particular importance

Complete graphs (cliques)

$$\mathcal{K}_n = \left([n], {[n] \choose 2}
ight)$$
 — every pair of vertices is an edge

Empty graphs

 $G=([n],\emptyset)$ — no pair of vertices forms an edge

Bipartite graphs

We can partition the vertices into parts $V(G) = V_1 \cup V_2$ so that every edge intersects V_1 and V_2 ; i.e., $G[V_1]$ and $G[V_2]$ are empty

Complete bipartite graphs

 $K_{m,n}$ is a bipartite graph with parts of size m and n, and all mn possible edges

§1.7: Walks, paths and cycles

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
 - Definitions
 - Paths in walks
 - Finding long cycles
- 8. Connectivity
- 9. Graph operations and parameters

Walks & Co.

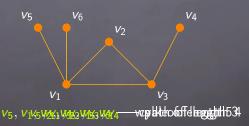
Definitions

A walk in a graph is a sequence of vertices v_0, v_1, \ldots, v_k and a sequence of edges $\{v_i, v_{i+1}\}, 0 \le i \le k-1$.

A path is a walk where all the vertices are distinct.

If, for a path with $k \geq 2$, $\{v_0, v_k\} \in E(G)$, then $v_0, v_1, \ldots, v_k, v_0$ is a cycle.

The length of a walk/path/cycle is the number of edges it contains.



Walks \Rightarrow paths

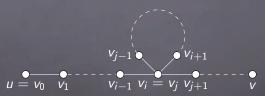
Proposition

Every walk from u to v in G contains a path between u and v.

Proof

Induction on the length ℓ of the walk $u=v_0,v_1,\ldots,v_\ell=v$. If $\ell=1$, the walk is a path.

For $\ell \geq 2$, if the walk is not a path, there is some i < j with $v_i = v_j$.



Then $u=v_0,\ldots,v_i,v_{j+1},\ldots,v_\ell=v$ is a shorter walk from u to v. Induction \Rightarrow contains a path from u to v.

Finding long cycles

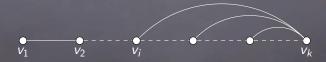
Can we guarantee the existence of cycles?

Proposition

Every graph G with $\delta(G) = \delta \ge 2$ contains a path of length δ and a cycle of length at least $\delta + 1$.

Proof

Let v_1, v_2, \ldots, v_k be a longest path in G



All neighbours of v_k must be on the path

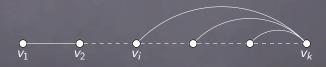
- otherwise we would have a longer path

Finding long cycles

Proposition

Every graph G with $\delta(G) = \delta \ge 2$ contains a path of length δ and a cycle of length at least $\delta + 1$.

Proof



Let v_i be the first neighbour of v_k on the path

$$\Rightarrow$$
 all neighbours of v_k are in $\{v_i, v_{i+1}, \dots, v_{k-1}\} \Rightarrow k-i \geq \delta$

The path is of length $\geq \delta$

The cycle
$$v_i, v_{i+1}, \ldots, v_k, v_i$$
 is of length $\geq \delta + 1$

Can we improve this?

Are these the longest paths/cycles we can hope to find?

Observation

The complete graph $K_{\delta+1}$ has:

- minimum degree $\delta(K_{\delta+1}) = \delta$
- no path of length $\delta+1$
- no cycle of length $\delta+2$

So the previous result is best possible

§1.8: Connectivity

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
 - Definition
 - Many components
- 9. Graph operations and parameters

Connectivity

It is often critical to be able to go from one vertex to another

Definition

A graph G is connected if for all pairs of vertices $u, v \in V(G)$, there is a path in G from u to v.

Remark

By our earlier proposition, it is enough to have a walk from u to v.

Components

Definition

A (connected) component of a graph G is a maximal connected subgraph of G.

Notat taa cocomposimile egita populo detro baranxe iortaeld

Observation

 ${\it G}$ is connected if and only if it has one connected component.

Graphs with few edges

Proposition

A graph G with n vertices and m edges has at least n-m connected components.

Proof

Induction on *m*

If m=0, all vertices are isolated and their own component

$$\Rightarrow$$
 $n = n - 0$ components

If $m \geq 1$, let $e = \{u,v\} \in E(G)$, and let G' = G - e

- Induction \Rightarrow G' has at least n-m+1 components
- Form G by adding e back to G'
 - ightharpoonup Components of u and v are merged
 - ▶ Other components left unchanged \Rightarrow at least n m components

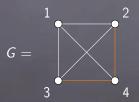
$\S 1.9$: Operations and parameters

- 1. Graphs
- 2. Graph isomorphism
- 3. The adjacency and incidence matrices
- 4. Degrees
- 5. Subgraphs
- 6. Special graphs
- 7. Walks, paths and cycles
- 8. Connectivity
- 9. Graph operations and parameters
 - Complements
 - Clique and independence numbers

Complements

Definition

Given a graph G = (V, E), the complement is $\bar{G} = (V, \binom{V}{2} \setminus E)$. That is, $\{u, v\} \in E(\bar{G})$ if and only if $\{u, v\} \notin E(G)$.

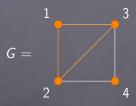


Cliques and independent sets

Definitions

A clique in a graph G is a complete subgraph.

An independent set in a graph G is an empty induced subgraph.



An in Alepa bing dent set

Graph parameters

Cliques

The clique number $\omega(G)$ of a graph G is the maximum order of a clique in G.

Independence number

The independence number $\alpha(G)$ of a graph G is the maximum order of an independent set in G.

Observation

Clique in $G\leftrightarrow$ independent set in $ar{G}$

Corollary

$$\omega({\sf G})=lpha(ar{\sf G})$$
 and $lpha({\sf G})=\omega(ar{\sf G})$

Thank you for listening!

Any questions?